DeepSynthBody

the beginning of the end for data deficiency in medicine

Forfattere

  • Vajira Lasantha Bandara Thambawita OsloMet - storbyuniversitetet

Sammendrag

Teknologiske fremskritt har gjort kunstig intelligens til et populært verktøy innen medisin. Spesielt metoder innen maskinlæring, en underkategori av kunstig intelligens, er mye brukt. Et mål i denne fobindelse er å utvikle gode, generaliserbare modeller for bruk i systemer for datamaskinassistert-diagnose, men en stor utfordring her er innsamling og behandling av medisinske data på grunn av for eksempel personvernhensyn og kostbare annoteringsprosesser. Denne oppgaven fokuserer derfor både på utvikling av maskinlæringsmodeller og å nne en løsning på problemet med manglende medisinske data. For å nå oppgavens mål har vi undersøkt tre forskjellige medisinske eksempler, nemlig kardiologi, gastroenterologi og andrologi. Ved hjelp av data fra disse medisinske områdene har vi utviklet maskinlæringsmodeller. For å løse mangelen på medisinsk data, har vi samlet inn, analysert og utviklet medisinske datasett, og vi har utført referanseanalyser. I tillegg, et rammeverk for generering av syntetiske medisinske data er utviklet ved hjelp av "generative adversarial networks" for å løse problemet med datamangel, hvor resultatene våre indikerer at slike genererte data kan være en mulig løsning. Som et overordnet konsept introduserer vi DeepSynthBody som grunnlag for strukturert og sentralisert generering av syntetisk medisinsk data. Studiene presentert i oppgaven, slik som generering av syntetiske elektrokardiogram, bilder og videoer fra tarmsystemet og sædprøver, viser at DeepSynthBody kan bidra til å overvinne personvernproblemer, redusere tid og ressursbruk innen dataanmerkingsprosessene, og utjevne problemene med data ubalanse innen det medisinske domenet. Våre eksperimenter viser at vi kan generere realistiske syntetiske data som gir sammenlignbare resultater med eksperimenter hvor man bruker reelle data. Det endelige DeepSynthBody-rammeverket er tilgjengelig som et åpent kildekode-prosjekt som gjør det mulig for både forskere og industri å bruke systemet og å bidra til fremtidig utvikling.

Publisert

2024-12-12

Utgave

Seksjon

Avhandlinger