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Abstract 
This report is a summary of the medical ultrasound activity at Oslomet over several 

years. The modelling of pulsed field propagation and generation is based on the 

method of the spatial impulse response method. A novel numeric algorithm for 

calculating the spatial impulse response has been developed and tested. The novel 

algorithm uses weighted binning to reduce the numeric noise in the calculation and 

the computation time can therefore be reduced. The method can be used for any 

source function. The method has been tested by comparison to piecewise analytic 

solutions and measurements. The measurements have been done in a water tank 

with several transducers as sources. Some of the transducer’s impulse responses 

were modified by digital inverse filtering. Measurements of pulse responses and 

beam profiles have verified the calculation method. Measurements of harmonic 

generation and propagation has been demonstrated, showing a narrower beam 

profile. Depth resolution was measured by applying deconvolution and the 

theoretical minimum of one-half period was achieved.  



 

ii 

Sammendrag 
Denne rapporten er en oppsummering av den medisinske ultralydaktiviteten ved 

Oslomet gjennom flere år. Modelleringen av pulset bølgeutbredelse og generering er 

basert på metoden med den romlige impulsrespons (SIR). En ny numerisk algoritme 

for beregning av den romlige impulsresponsen er utviklet og testet. Den nye 

algoritmen bruker vektet diskretisering for å redusere den numeriske støyen i 

beregningen, og beregningstiden kan derfor reduseres. Metoden kan brukes for alle 

kildefunksjoner. Metoden er testet ved sammenligning med stykkevise analytiske 

løsninger og målinger. Målingene er gjort i en vanntank med flere transdusere som 

kilder. Noen av transduserens impulsresponser ble modifisert med digital invers 

filtrering. Målinger av pulsrespons og stråleprofiler har verifisert beregningsmetoden. 

Målinger av harmonisk generering og utbredelse er demonstrert, og viser en smalere 

stråleprofil. Dybdeoppløsning ble målt ved å bruke dekonvolusjon og det teoretiske 

minimum på en halv periode ble oppnåd
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Definitions/abbreviations 
SIR Spatial Impulse Response 

IMT Intima Media Thickness 

PZT Lead zirconate titanate, also called lead zirconium titanate and commonly 

abbreviated as PZT, is an inorganic compound with the chemical 

formula Pb[ZrxTi1−x]O3 (0 ≤ x ≤ 1).. It is a ceramic perovskite material that shows a 

marked piezoelectric effect, 

KLM a transmission line model after Krimholtz, Leedom and Matthaei[16]. 

PMMA Polymethyl methacrylate(PMMA), is a transparent and versatile synthetic 

resin widely known as acrylic or plexiglass. 

PVDF Polyvenylidene Fluoride, a plastic film used in hydrophones due to its piezo-

electric properties. 

PA75 A transducer manufactured by Precision Acoustics with focus at 75mm. 

PAplan An unfocused transducer manufactured by Precision Acoustics with a 

quaterwave matchinglayer 

PATR A transducer for transmit and receipt manufactured by Precision Acoustics. 

PS Polystyrene 

 

.

https://en.wikipedia.org/wiki/Inorganic_compound
https://en.wikipedia.org/wiki/Chemical_formula
https://en.wikipedia.org/wiki/Chemical_formula
https://en.wikipedia.org/wiki/Perovskite_(structure)
https://en.wikipedia.org/wiki/Piezoelectricity
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1 Introduction 
Medical ultrasound imaging utilizes piezo-electric transducers driven in pulsed mode. 

The quality of the image depends on the pulses shaped by the transducer. 

Simulations of the pulsed ultrasonic fields is therefore a tool to understand the 

physical limitations of the ultrasonic imaging technique. Calculations of pulsed wave 

fields require temporal information. The method of choice is the Spatial Impulse 

Response method (SIR). The method was first published by Tupholm [1] in 1969. 

The method was brought to the attention of the ultrasound community by 

Stephanishen [2,3] in 1981. 

The method reduces the calculation of pulsed fields to a calculation of the Spatial 

Impulse Response (SIR). The SIR is the velocity potential of the source when the 

source excites the medium with an impulse function. Several methods of calculation 

have been published. They can be categorized as analytic methods and purely 

numeric methods. The analytic methods assume that a spherical impulse is 

propagating with the speed of sound from an observation point. The intersection 

between the wave front and the source function is found and yields the analytic 

solution. The result is a set of piecewise analytic functions, valid over a given time 

range. The observation space must also be divided into several regions where 

different solutions are valid. The piecewise analytic functions and the different 

regions of validity result in complex calculation schemes. In addition, different source 

functions have different solutions. The first analytic solutions for a planar circular disc 

and for a planar rectangular disc, was published in the first papers by Stephanishen 

[[2],[3]] in 1971. Arditi et al [5] published an analytic solution for a focused circular 

disc in 1981. Dietz et al [6] published a solution for annular arrays in 1978, using a 

subtraction technique. Due to circular symmetry, circular sources have simpler 

solutions than rectangular sources. The first to find an analytic solution for a focused 

rectangular source were Penttinen and Luukkala [7] in 1976. Apodization was added 

to the solution for a rectangular source by Harris [8] in 1981 and by Tjøtta [9] in 

1982. These solutions are complicated to program and is followed by a lot of logical 

programming and testing for validation. Several papers have been published on the 

attempt to simplify the algorithms. A bandlimited approach was published by D’hooge 

et al [10] in 1997 and a faster algorithm was published by Ortega et al [11] in 2014. A 

simpler solution for the planar rectangular source including phased arrays was 

published by Cheng at al [12] in 2011. 

A major disadvantage of the analytic solutions is that a separate algorithm is needed 

for each source function. Numeric algorithms on the other hand, can be designed to 
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support any source function. We start by dividing the source into elements, at least 

smaller then half the wavelength. Each element is given an amplitude and a time 

delay, so that an amplitude matrix and a time delay matrix define the source function. 

The amplitude matrix is used to define the shape of the source and any apodization. 

The time delay matrix is used to define focusing and beam steering. For the numeric 

method, in general we assume that each source element radiates an impulse with 

the specified amplitude and time delay. At the observation point, we can sum up the 

contribution from all source elements. In 1990, Jensen [13] published a numeric 

method that assumes that the observation point is in the far field of each source 

element and that the SIR is a trapezoid. At the observation point, the contribution of 

each source element is summed up to yield the total SIR of the source.  

In this report, we will use a numeric method to calculate the pulsed pressure fields. 

The shape of the source function and apodization will be defined by an amplitude 

matrix, A, and the focusing and beam steering will be defined by a time delay matrix 

τ. We assume that each source element radiates a Dirac’s delta function. At the 

observation point, we can sum up the contributions from each source element as a 

sum of delta pulses in a time array. The novelty of the method is that each 

contribution is entered into the time array with weighted binning. With this method, 

each contribution is shared between the two closest time elements so that the time 

average of the two equals the exact arrival time of this contribution. The weighted 

binning algorithm has previously been validated in Sponheim [[14]] for circular 

sources and in Sponheim [15] for rectangular sources. 

In chapter 2 the theory of the SIR-method is summarized, and the novel numeric 

method is presented. A one-dimensional transducer model is also presented. The 

use of inverse filtering to improve the performance of the transducer and lens design 

for focusing of the beam is introduced. 

In chapter 3 calculations based on the theory in chapter 2 are performed. First the 

numeric method is validated. Second, calculations based on the transducer model 

are shown. Finally, various ways of calculating and presenting pulsed fields are 

presented. The MATLAB codes used in this chapter are listed in the appendix. 

Chapter 4 is devoted to the measurements. The water tank and all the instruments 

used are presented. The rest of the chapter is divided into sections for each 

transducer. The transducers have been designed for different purposes.  
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2 Theory 
Relevant theoretical aspects are presented in this section. 

2.1 Spatial Impulse response Method 
Figure 2.1 

Geometry for calculation of the spatial impulse response. 

 

The Rayleigh integral for a piston source in an infinite baffle radiating into infinite 

half-space (z>0) is:  

𝜑(𝑟, 𝑡) = ∫
𝑣𝑛(𝑟0, 𝑡 − 𝑅 𝑐⁄ )

2𝜋𝑅
𝑑𝑆                                                    (2.1)

𝑆

 

Where ϕ is the velocity potential at point 𝑟 at time t, 𝑣𝑛 is the normal velocity at the 

source surface S in position 𝑟0 , R is the distance between  𝑟 and 𝑟0, and c is the 

speed of sound, see Figure 2.1. We assume that the normal velocity at the source 

have the same time dependence v(t) for all S, but that the amplitude A(𝑟0) and the 

time delay τ(𝑟0) can be a function of 𝑟0 at the source in order to achieve apodization 

and focusing. Thus, we have: 

𝑣𝑛(𝑟0, 𝑡) = 𝐴(𝑟0)𝑣(𝑡 − 𝜏(𝑟0))                                                         (2.2) 

And 
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𝜑(𝑟, 𝑡) = ∫
𝐴(𝑟0)𝑣(𝑡 −

𝑅
𝑐 − 𝜏(𝑟0))

2𝜋𝑅
𝑑𝑆                                       (2.3)

𝑆

 

By applying the convolution theorem for the Dirac δ-function, we get: 

𝜑(𝑟, 𝑡) = ∫ 𝑣(𝜎)

∞

−∞

∫
𝐴(𝑟0)𝛿 (𝑡 −

𝑅
𝑐 − 𝜏(𝑟0) − 𝜎)

2𝜋𝑅
𝑑𝑆 𝑑𝜎

𝑆

= 𝑣(𝑡) ∗ ℎ(𝑟, 𝑡)                            (2.4) 

where * denotes convolution and  

ℎ(𝑟, 𝑡) = ∫
𝐴(𝑟0)𝛿(𝑡 − 𝑅

𝑐⁄ − 𝜏(𝑟0))

2𝜋𝑅
𝑑𝑆                                   (2.5)

𝑆

 

is the spatial impulse response (SIR) of the source. The SIR is the resulting velocity 

potential when the source S excites the infinite half-space with a Dirac’s δ-function, 

𝑣(𝑡) = 𝛿(𝑡). The pressure field is found from the velocity potential as: 

𝑝(𝑟, 𝑡) = 𝜌
𝑑

𝑑𝑡
𝜑(𝑟, 𝑡) = 𝜌

𝑑

𝑑𝑡
𝑣(𝑡) ∗ ℎ(𝑟, 𝑡)                                 (2.6) 

where ρ is the mass density of the medium.  

The calculation of pulsed pressure fields has been reduced to the calculation of the 

SIR for a given source function, defined by A and τ. 



 

18 

 

2.2 Numeric calculation of SIR 
Figure 2.2 

Geometry for numeric calculation of the spatial impulse response. 

 

Numeric calculations of the spatial impulse response are done by dividing the source 

into N by M source elements that are ∆x0 by ∆y0 in size, so that the width of the 

source is LX=N∆x0 and the height of the source is LY=M∆y0. The coordinates of the 

source are (x0, y0) with origo at the center of the source, that coincides with the origo 

of the spatial coordinates (x, y, z). The z-axis is also the acoustic axis of the source. 

Figure 2.2 shows the geometry of an arbitrary source element in position r0 = (x0, y0). 

The indices n and m are positive integers that runs from 1 to N and M, respectively. 

The position of each element should be at the center of the respective element. The 

length of r0 for element (n, m) is therefore given by: 

|𝑟0| = √𝑥0
2 + 𝑦0

2 = √((𝑛 −
(𝑁 + 1)

2
) ∆𝑥0)2 + ((𝑚 −

(𝑀 + 1)

2
) ∆𝑦0)2 

The observation point is at r = (x, y, z). The distance between source element (n, m) 

and the observation point is given by: 

𝑅𝑛𝑚 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 + 𝑧2

= √(𝑥 − (𝑛 −
(𝑁 + 1)

2
) ∆𝑥0)2 + (𝑦 − (𝑚 −

(𝑀 + 1)

2
) ∆𝑦0))2 + 𝑧2 
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The spatial impulse response becomes a sum over all source elements where the 

source is defined by the amplitude matrix Anm and the time delay matrix τnm. inm is the 

time index in the time array for element (n, m): 

ℎ(𝑟, 𝑖) = ∑ ∑ ∆𝑛𝑚

𝑁

𝑛=1

𝑀

𝑚=1

ℎ(𝑖𝑛𝑚) = ∑ ∑
𝐴𝑛𝑚

2𝜋𝑅𝑛𝑚
∆𝑥0∆𝑦0/∆𝑡

𝑁

𝑛=1

𝑀

𝑚=1

  𝑤𝑖𝑡ℎ  𝑖𝑛𝑚 = [
𝑅𝑛𝑚 − 𝑧

𝑐∆𝑡
+

𝜏𝑛𝑚

∆𝑡
] 

The spatial impulse response at the observation point is calculated as a time discrete 

function with time resolution ∆t. The contribution to the SIR from element (n, m) 

arrives at t = Rnm/c+τnm. We shall use retarded time defined as T=t-z/c, to shorten the 

time discrete array for the SIR. The time index for element (n, m) will be inm = Tnm/∆t, 

but Tnm/∆t is a real number, and an index must be an integer. A simple conversion of 

a real number to an integer will add numeric noise to the SIR. We shall therefore 

apply the method of weighted binning [14][15]. The method of weighted binning 

shares the contribution of a source element between the two closer time elements of 

the SIR. The weighted time average of the two equals the exact arrival time, see 

Figure 2.3[15]. We separate the real time index, inm, into an integer time index, i, and 

a rest value, ∆i, given by: 

∆𝑖 = 𝑖𝑛𝑚 − 𝑖 =
𝑇𝑛𝑚

∆𝑡⁄ − 𝑖 

∆i is a real number between zero and one and can be used to share the contribution 

of source element (n, m) between time element i and i+1. If the contribution from 

source element (n,m) to the SIR is ∆hnm , we can add (1-∆i)∆hnm to time element i 

and ∆i∆hnm to time element i+1.  

∆𝑛𝑚ℎ(𝑖) = (1 − ∆𝑖)
𝐴𝑛𝑚

2𝜋𝑅𝑛𝑚
∆𝑥0∆𝑦0/∆𝑡           𝑎𝑛𝑑           ∆𝑛𝑚ℎ(𝑖 + 1)

= ∆𝑖
𝐴𝑛𝑚

2𝜋𝑅𝑛𝑚
∆𝑥0∆𝑦0/∆𝑡  

The weighted time average of these to contributions will be the exact arrival time, 

Tnm, from source element (n, m). The time weighted contribution is: 

𝑖∆𝑡 ∙ (1 − ∆𝑖)∆ℎ𝑛𝑚 + (𝑖 + 1)∆𝑡 ∙ ∆𝑖∆ℎ𝑛𝑚 = ∆𝑡(𝑖 + ∆𝑖)∆ℎ𝑛𝑚 = 𝑇𝑛𝑚∆ℎ𝑛𝑚 

which equals the exact time weighted contribution from element (n, m).  



 

20 

 

Figure 2.3 

Two time-elements of the SIR time array, i and i+1.  

 

The blue solid arrow represents the contribution from source element (n, m) arriving 

at retarded time Tnm. The two red dashed arrows represent the weighted binning 

contribution from the same source element. 
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2.3 Transducer model 

All transducers in this project are circular disc transducer with a diameter of several 

wavelengths across and half a wavelength thick. These transducers can with good 

approximation be modelled as simple one-dimensional thin disc piezo-electric 

transducer. The model used, is referred to as the KLM-transmission line model after 

Krimholtz, Leedom and Matthaei [16]. The transducer is modelled as a transmission 

line with a half period thickness at the design frequency. The electro-acoustic 

coupling is modelled at the center of the disc, see Figure 2.4. 

Figure 2.4 

The KLM-transmission line model of a thin disc piezoelectric transducer. 

 

Here the following definitions are used: 

Wavenumber: 𝑘0 = 𝜔√𝜌 𝜅⁄  

Angular thickness: 𝜃 = 𝑘0𝑡 

Acoustic Impedance: 𝑍0 = 𝑘0𝜅𝐴/𝜔 

Capacitance:  𝐶0 = 𝜀0𝜀𝐴/𝑡 

Coupling factor: 𝑁 = ℎ𝐶0 = 𝐶0/𝑑33 

The notations are: 

Angular frequency: ω 



 

22 

 

Mass density: ρ 

Compressibility: κ 

Dielectric constant: 𝜀0𝜀𝑆  (constant strain) 

Piezoelectric constant: ℎ = 1/𝑑33 

Thickness of disc: t 

Area of disc: A 

Backing impedance: 𝑍𝐵 

Load impedance: 𝑍𝐿 

Front port force: 𝑉1 

Velocity into front port: 𝐼1 

Back port force: 𝑉2 

Velocity into back port: 𝐼2 

Voltage at electric port: 𝑉3 

Current into electric port: 𝐼3 

 

The equivalent circuit in Figure 2.4 can be used to calculate the electric input 

impedance of the transducer as: 𝑍𝑖𝑛(𝜔) = 𝑉3(𝜔)/𝐼3(𝜔). 

The transfer function from voltage at the electric port to the acoustic velocity at the 

front port can be found as: 𝐻(𝜔) = 𝐼2(𝜔)/𝑉3(𝜔). 

Finally, the impulse response of the transducer can be found as the inverse Fourier 

transform of H(ω): ℎ(𝑡) = ℱ−1{𝐻(𝜔)}. 

To increase the bandwidth of the transducer, we can add a quarter wave matching 

layer at the front. The matching layer can be modelled as its cascade matrix: 
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(
𝑉2

𝐼2
) = (

𝑐𝑜𝑠𝜃 −𝑗𝑍0𝑠𝑖𝑛𝜃

𝑗
𝑠𝑖𝑛𝜃

𝑍0
−𝑐𝑜𝑠𝜃

) (
𝑉1

𝐼1
) 

Here θ is the angular thickness of the matching layer and Z0 is its acoustic 

impedance. Index 1 is towards the active element and index 2 is towards the 

acoustic front. This model can be used for several matching layers in cascade if 

required. We can also increase the bandwidth by using a heavy backing.  
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2.3 Inverse filtering and pulse forming 
Spatial resolution is one of the critical parameters in imaging together with signal to 

noise ratio. In medical ultrasound imaging, the pulse form influence both the axial 

resolution and the signal to noise ratio of the image. The transmitted pulse is formed 

by a piezoelectric transducer and by the excitation of the transducer. The pulse 

length influences the axial resolution, and the pulse length is inversely proportional 

with the bandwidth of the transducer. The signal to noise ratio depends on the 

energy of the transmitted pulse, but the amplitude of the transmitted acoustic 

pressure is limited by the allowed mechanical index in medical imaging. The only 

way to increase the pulse energy is to increase the length of the pulse. This trade-off 

between resolution and SNR does not have an optimal solution and will depend on 

the imaging application. It is usual to consider a two-period pulse of the center 

frequency, f0, to be optimal for general purpose imaging. This pulse will give an 

acceptable axial resolution, Δz=2c/f0, where c is the speed of sound. The transducer 

must therefore have a bandwidth of at least 50%. If the transducer has a wider 

bandwidth, the pulse can be formed by the excitation of the transducer. Another 

important aspect of the pulse form is what is normally referred to as the tail of the 

pulse. This is caused by the after ringing of the resonant transducer and should be 

made as short and small as possible, since it has a negative influence on both 

resolution and signal to noise ratio. 

The transmitted pulse, y(t), of a transducer can be found as the convolution of the 

transducers impulse response, h(t), and the excitation signal, x(t): 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑥(𝑡) 

where * denotes convolution. Applying the Fourier transform on this equation, we 

get: 

Y(f) = H(f)•X(f) 

 

where Y(f) is the frequency spectrum of the transmitted pulse, X(f) is the frequency 

spectrum of the excitation pulse and H(f) is the frequency response of the 

transducer. The impulse response of a transducer can be found from a mathematical 

model of the transducer or from a measurement of the transmitted pulse, ym(t), with 

a Dirac’s delta function, δ(t), as excitation. 

𝑦𝑚(𝑡) = ℎ(𝑡) ∗ 𝛿(𝑡) = ℎ(𝑡)  ↔ 𝑌𝑚(𝑓) = 𝐻(𝑓) 



 

25 

 

Let us then assume that we have a description of the ideal imaging pulse, p0(t), and 

want to find the excitation pulse, x0(t), that will produce the ideal imaging pulse.  

𝑝0(𝑡) = ℎ(𝑡) ∗ 𝑥0(𝑡) = 𝑦𝑚(𝑡) ∗ 𝑥0(𝑡)  ↔  𝑃0(𝑓) = 𝐻(𝑓)𝑋0(𝑓) = 𝑌𝑚(𝑓)𝑋0(𝑓) 

Thus, we get: 

𝑋0(𝑓) =
𝑃0(𝑓)

𝐻(𝑓)
=

𝑃0(𝑓)

𝑌𝑚(𝑓)
 ↔  𝑥0(𝑡) = ℱ−1 {

𝑃0(𝑓)

𝑌𝑚(𝑓)
} 

The ideal excitation pulse is found as the inverse Fourier transform of the frequency 

spectrum of the ideal imaging pulse divided by the measured frequency response of 

the transducer. This technique is referred to as invers filtering or deconvolution. The 

frequency spectrum of the ideal excitation pulse becomes singular if the frequency 

response of the transducer has zeroes. The transducers are mostly constructed as a 

damped half wavelength resonator. These transducers will have a zero in the 

frequency response at twice the resonance frequency. Mathematically, we can say 

that the inverse Fourier transform does not exist. The measured frequency response 

of the transducer will have low values compared to added noise in the measurement 

for large frequency bands. Applying the inverse formula in these frequency bands will 

only amplify the noise in the experiment. It is therefore necessary to select the 

frequency band for which we can apply the technique and to have a realistic 

suggestion for the ideal imaging pulse. 

2.4 Acoustic lens design 

Planar disc-transducers are easier to make if matching layers are to be added. To 

focus the acoustic beam of the transducer we will need lenses. In this project a 

silicon rubber with speed of sound equal to approximately 1000 m/s has been used. 

This gives a refractive index of n = 1.5 and a planar/concave lens can be made to 

focus the beam. This is a practical shape of a lens as the planar side can be attach 

to the transducer and the concave side toward the window in a measurement tank. 

Using simple geometric ray theory for the lens design, we find in the literature [ref.] 

that the focal length can be calculated as: 

𝐹 =
𝑅

𝑛 − 1
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Where F is the focal length, n is the refractive index and R is the radius of the 

concave surface. With a refractive index of 1.5 and a desired focal length F we get: 

𝑅 =
𝐹

2
 

A molding form with the required radius can be made and the lens molded in it with 

the other surface planar. 
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3 Calculations 

3.1 Varification of the novel numeric 

method 

Verification of the novel numeric method can be done by comparison with an analytic 

method. The simplest analytic solution is that of a circular planar disc. Figure 3.1 

shows the geometry. 

Figure 3.1 

Geometry for calculation of the SIR of a planar circular disc in Tabel 3.1. 

 

An analytic solution for a planar circular disc with radius a can be found in 

Stephanishen [2]. The infinite half space (z > 0) is divided into two regions. Region 1 

is the geometric shadow of the disc defined as the cylinder with radius 𝑎, and axis 

along the acoustic axis defined equal to the z-axis. Region 2 is the rest of the infinite 

half space. Figure 3.1 shows the geometry as a two-dimensional problem due to 

circular symmetry. The critical time points for this geometry are the first arrival time t0 

corresponding to the normal distance between the source and the observation point 

(x, y, z), t1, the propagation time between the closer edge of the disc and the 

observation point and t2, the propagation time between the further edge and the 

observation point. Table 3.1 presents the results. 
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Table 3.1 

The Spatial Impulse Response. The piecewise analytic solution of the SIR for a 

planar circular disc of radius 𝒂. 

ℎ(𝒓, 𝑡) = Region 1 Region 2 

0 t<t0 t<t1 

c t0<t<t1 Not appl. 

𝑐

𝜋
arccos (

𝑐2𝑡2 − 𝑧2 + 𝑥2 − 𝑎2

2𝑥√𝑐2𝑡2 − 𝑧2
) t1<t<t2 t1<t<t2 

On the acoustic axis (x=0) the SIR will be a rectangular function equal to c between 

the critical time points t0 and t1=t2. We need to sample SIR and calculate for discrete 

time points. To reduce the length of the time array, we introduce the retarded time 

T=t-t0 so that T0=0 and T1=t1-t0. The time length of the SIR on-axis is: 

∆𝑇 = 𝑡1 − 𝑡0 = (√𝑎2 + 𝑧2 − 𝑧) /𝑐                                               (3.1) 

ΔT will decrease with z and the SIR will approach a δ-function as z increases. We 

observe from (2.6) that SIR shall be convolved with v(t) to find the pressure. The 

front velocity of the transducer v(t) is a band limited signal and therefore also the 

pressure pulse. The sampling frequency of the SIR must therefore be greater than 

twice the transducer bandwidth. However, the area under the curve of the SIR must 

be correct, to correctly calculate the pressure field. This requires an accurate 

calculation of the SIR around the critical time points t0, t1 and t2 to make sure that the 

area under the curve is correct.  

To compare the purely numeric calculation and the piecewise analytic calculation of 

the SIR, we chose the source function to be a planar circular disc with radius 

a=6.35mm. We also chose to divide the source into elements that are Δx=0.1mm by 

Δy=0.1mm for the numeric calculation so that Anm is a 127 by 127 matrix. The 

circular source is modelled by assigning a value of 1 to all elements with center 
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inside the circle of radius a, and 0 to all elements with center outside the circle. The 

source can easily be apodised by changing the values of Anm accordingly. All 

elements in τnm are set to zero to model a non-focused source. Focusing can be 

included by calculating the time delay of the elements of τnm to form a spherical wave 

front. 

Most medical imaging transducers use frequencies well below 25 MHz so the 

required sampling frequency will be 50 MHz; the required time resolution is Δt=20ns. 

Figure 3.2 shows the on-axis SIR at a distance z=20mm for the analytic calculation 

(solid green line) and the numeric calculation (dashed blue line). At t0 (T=0) the 

analytic SIR has been given the value c/2=750m/s to give SIR the correct area under 

the curve. In the other end of the rectangular function, at the time element located at 

660ns that includes T1 = 655.91ns, the analytic SIR has been given the value c((660-

655.91)ns/20ns)=443m/s in order to give SIR the correct area under the curve at the 

end of the rectangular function. Between the critical time points T0=0 and T1 the SIR 

is given the value of c=1500m/s. 

To compare the two results, we define a root mean square error function: 

𝐸 = √
1

𝐼
∑(𝐻𝑛𝑢𝑚(𝑖) − 𝐻𝑎𝑛𝑎(𝑖))2

𝐼

𝑖

                                  (3.2) 

Hnum(i) is the numerically calculated SIR and Hana(i) is the analytically calculated SIR. 

Applying this formula to the results shown in Figure 3.2, we get E=14m/s which is 

0.9% of the average value of c=1500m/s. 

The above calculations of the SIR are for an on-axis observation point where the SIR 

is a rectangular function. In order to test the algorithm further, we chose an 

observation point in region 2 where the analytic solution is an analytic function 

between the time points t1 and t2. The analytic function goes to zero at both t1 and t2 

and adjustments around these time points is not required. shows the SIR for an 

observation point at distance 40mm and 10mm off-axis, (z, x) = (40mm, 10mm), 

calculated with the analytic solution in Table 3.1 (solid green line) and the numeric 

algorithm (dashed blue line). The rms-error calculated with (10) gives E = 2.0m/s 

which is 0.6 % of the maximum value of 330m/s.  
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Figure 3.2 

The on-axis SIR at distance 20mm. The solid line is the analytic result, and the 

dashed line is the result from the novel numeric algorithm. 

 

Figure 3.3 

The off-axis SIR at observation point (z, x) = (40, 10) mm. The solid line is the 

analytic result, and the dashed line is the result from the novel numeric algorithm. 

 

A critical area for analytic calculation of the SIR is at and around the focal point. At 

the focal point the SIR becomes a Dirac delta function, δ(t). Figure 3.4 shows the 

SIR of a focused disc of diameter 15mm and a focal length of 75mm at the focal 

point. 
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Figure 3.4 

Numeric calculation of the SIR at the focal point. 

 

The SIR in Figure 5 is centered at 0.25μs equal to the time delay at the center of the 

source and the contribution from the source elements are distributed in the two 

closest bins of each 20ns. The half value length of the SIR is therefore 40ns. 

3.2 Transducer calculations 
A test transducer was designed during my PhD-work [17] at The Electronics 

Laboratory at NTH (today SINTEF/NTNU). It was made of a circular disc of PZ27 

(Ferroperm, Denmark) with diameter 12.7mm and thickness tuned to 3MHz. The disc 

was equipped with a quarter-wave matching layer at the front with an acoustic 

impedance of 4.25 Mrayl and speed of sound equal to 2800m/s. The backing of the 

disk was made of Devenycell, a porous mechanically stiff material with estimated 

acoustic impedance of 0.4 Mrayl and high losses at 3MHz. This transducer is used 

as an example when doing the following calculations. The Matlab program 

transducer1.m can calculate the electrical input impedance, the frequency response 

from the electrical port to the acoustic front and the companion impulse response 

using the transmission line model described in Chapter 2.3. 

Figure 3.5 shows the electric input impedance of the transducer. The transducer is 

capacitive, as expected, except around resonance at 3MHz. Between 2 and 4MHz 

the input impedance has a real component, and power is coupled to the acoustic 

front. 
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Figure 3.7 shows the amplitude of the frequency response from the electric port to 

the acoustic front and Figure 3.8 shows the impulse response of the transducer, 

found as the inverse Fourier transform of the frequency response. This impulse 

response is the normal front velocity of the transducer provided that the electric 

excitation is a Dirac delta function. The center frequency of the transducer is 3MHz 

and the FWHM-bandwidth is 1.5MHz or 50%. This is in good agreement with the fact 

that the main part of the pulse is approximately two periods long. The relatively short 

tail of the pulse is due to the bell-shape of the amplitude response. This pulse is well 

suited for imaging purposes as it will give a depth resolution of about 1mm, but also 

contain an adequate amount of energy. 

Figure 3.5 

Electric input impedance of transducer1 
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Figure 3.6 

Impulse response of transducer 1 

 

Figure 3.7 

Frequency response of transducer 1. 
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3.3 Calculation of pulsed fields 
Figure 3.8  

Overview of programs for calculation of pulsed ultrasonic fields.  

 

1.Generate front velocity of 

source::transducer1.m: 

2.Physical model of transducer 

frontvel.m: Mathematical definition of 

pulse.Outcome: vfront(nft) 

Define source shape:1: 

disc1.m:Circular disc of radius 

r0max 2: rect1.m:Rectangular disc 

of size Lx by Ly Outcome: A(nx,ny) 

and tau(nx,ny) 

field0.m:Calculate

s pressure at an 

observation point 

as function of 

time.Outcome: p(t) 

at the observation 

point (x,y,z) 

field1.m:Calculat

es pressure 

along x-axis 

perpendicular to 

acoustic axis in 

the image plane 

as function of 

time or as beam 

profile(p-

p).Outcome: 

p(x,t) 

field2.m: 

Calculates p-p 

pressure in the 

image plane (xz-

plane).Outcome: 

p(x,z) in image plane 

(y=0) 

fieldL.m:Calculates p-

p pressure along 

acoustic axis (z-axis) 

Outcome: p(z) along 

acoustic axis (x=0, 

y=0) 

fieldT.m:Calculates 

p-p pressure in a 

plane perpendicular 

to the acoustic axis. 

Outcome: p(x,y) with 

z constant 

Num.alg.:numwbin.m 
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Figure 3.8 shows an overview of the programs used to calculate the pulsed 

ultrasonic fields. The pulsed fields are calculated for different observation geometries 

with the different field programs. They all use the same numeric algorithm that is 

based on weighted binning. But prior to embarking on the field calculation, the 

source must be defined. The source is defined by the normal velocity on the front of 

the source and by the shape of the source surface. The normal velocity of the source 

can be generated by two different programs. The simplest program is frontvel.m. 

This program is just a mathematical description of a pulse that can be used in the 

calculations of the fields. A more complex program is transducer1.m. This program is 

a mathematical model of a thin disc piezo-electric disc. The program calculates the 

electric input impedance of the transducer, the frequency response from the electric 

port to the front velocity of the transducer and the corresponding impulse response 

of the transducer. This impulse response is used as the front velocity in the 

calculations. This require that the transducer is excited with an impulse at the electric 

port. The pulse is shown in Figure 3.6. 

The shape of the source front must also be defined before calculating the field. In 

medical ultrasound, two different shapes are in regular use. These are circular disc 

transducers and rectangular transducers as phased arrays or linear arrays. A circular 

disc transducer can be defined with the program disc1.m. The inputs to this program 

are the diameter of the disc and the focal length of the disc. Figure 3.10 shows the 

source function time-delay of a disc with diameter 12.7mm and focal length 75mm. 

The amplitude is planar, see Figure 3.9 because there is no apodization and the time 

delay is parabolic with focus in the focal point. The source elements are 0.1mm by 

0.1mm. This size of the elements is considered small enough as the wavelength at 

3MHz is 0.5mm. 

A rectangular transducer can be defined with the program rect1.m. The inputs to this 

program are the length and the width of the transducer front as well as the focal 

length in azimuth, Fx, and elevation, Fy. 

When the source is properly defined, the field calculations can start. The parameters 

and the results from the source definition programs must be stored in the working 

space of MATLAB. The pressure field is a function of the observation coordinates, (x, 

y, z), as well as time, p (x, y, z, t). To present the calculations, the 4-dimensional 

function is simplified by calculating the field along characteristic axis and planes. The 

time dimension is in most calculations reduced to a peak-peak value of the pressure. 

The spatial axes are standardized, so that the z-axis is the acoustic axis starting at 
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the center of the source and the x-axis is defining the image plane, so that the xz-

plane is the assumed image plane of a 2D-ultrasound scanner. 

The program field0.m calculates the pressure field in a single observation point as 

function of time, p(t). Figure 3.11 shows the pressure pulse at the focal point for a 

circular disc with diameter 12.7mm and focal length 75mm.  

The program field1.m calculates the pressure field along the x-axis at a given z-

position. The field is presented as a pulse in space as a function of time or as a 

beam profile. Figure 3.12 shows the pressure pulse as a function of time and 

distance from the acoustic axis. At the acoustic axis we can see the pulse shape as 

function of time like the plot in Figure 3.11. Distal from the axis we can see the 

characteristic center wave followed by the edge wave. Figure 3.13 shows the beam 

profile at depth 100mm as function of distance from the axis. The solid curve shows 

the peak-peak pressure where the time dimension is reduced to the difference 

between the maximum and the minimum pressure. The dashed curve represents the 

pulse energy integrated over time.  

Figure 3.9 

The source amplitude of a circular disc of diameter 12.7mm. 
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Figure 3.10 

The source time delay of a circular disc of diameter 12.7mm and a focal length of 

75mm. 

 

Figure 3.11 

Pressure pulse at focus of the circular disc described above. 
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Figure 3.12 

Pressure pulse at distance 100mm as a function of time and distance from the axis. 

 

Figure 3.13 

Beam profile at depth 100mm as function of distance from the axis. 

 

The program field2.m calculates the peak-peak pressure in the image plane, p (x, z). 

Figure 3.14 shows the peak pressure beam in the image plane, z is the image depth 

and x is the distance from acoustic axis. Figure 3.15 shows a contour plot of the 

same beam as in Figure 3.14. The distance between the contours are 3dB. The 0dB 
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point is at depth z = 50mm and x = 0. Figure 3.16 shows the contour plot when the 

beam profiles are normalized at each depth of the same beam as in both Figure 3.14 

and Figure 3.15. 

Figure 3.14 

Peak pressure beam in the image plane (x, z). 

 

Figure 3.15 

Contour plot of peak pressure beam in image plane. The contours are 3dB apart. 

Starting at 0dB at (x, z) = (0, 50mm) and ending at -30dB. 
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Figure 3.16 

Contour plot of peak pressure beam in image plane. The beam profiles are 

normalized at each depth. 

 

 

The program fieldL.m calculates the peak pressure field along the acoustic axis, p(z). 

Figure 3.17 shows the peak pressure along the acoustic axis also referred to as the 

z-axis. These calculations show us at what depth the highest pressure occurs. The 

transducer in these calculations is focused at 75mm. Diffraction causes the beam 

waist to be closer to the source. A planar source will have a beam waist at a distance 

a2/λ, where λ is the wavelength and a is the radius of the source. In the calculations 

we have used a radius of 6.35mm and the wavelength of the center frequency is 

0.5mm. The distance to the beam waist of the planar source is therefore 80mm. If we 

use inverse addition of 75mm and 80mm, we get 40mm, which is close to the 

maximum of the plot in Figure 3.17. 

Finally, the program fieldT.m calculates the pressure field transversal to the acoustic 

axis at a given depth, p (x, y). This is to accommodate the rectangular shaped 

sources, for circular sources the transversal field will have circular symmetry. To 

demonstrate this program, we simulate a rectangular transducer with dimension 

20mm in the x-direction by 10mm in the y-direction and give it a focus of 75mm in 

the image plan (x-direction) and no focus in the y-direction (elevation). We apply the 
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rect1.m program to generate the source function. For completeness we will also 

generate the front velocity function with the program frontvel.m. Figure 3.18 shows 

the front velocity and Figure 3.19 its spectrum. The simulated pulse is a tree-period 

Hanning weighted pulse with center frequency of 3MHz. The pulse is like the 

calculated pulse of the circular transducer shown in Figure 3.6. Figure 3.20 shows 

the amplitude and Figure 3.21 the time delay of the rectangular source with focal 

length 75mm in the image plan. Figure 3.22 shows the peak pressure transvers to 

the acoustic axis at depth 75mm which is at the same depth as the focus in the 

image plane. Figure 3.23 shows the contour plot of the peak pressure at depth 

75mm. 

 

Figure 3.17 

Peak pressure along the acoustic axis (z – axis). 
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Figure 3.18 

Front velocity pulse of the rectangular transducer. 

  

Figure 3.19 

Front velocity spectrum of the rectangular transducer. 
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Figure 3.20 

Source amplitude of the rectangular transducer. 

 

Figure 3.21 

The source time delay of the rectangular transducer (20 x 10mm). 

 



 

44 

 

Figure 3.22 

Transvers pressure beam orthogonal to the acoustic axis at depth 75mm. 

 

Figure 3.23 

Contour plot of the transvers pressure of the rectangular transducer at depth 75mm. 
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4 Measurements 

4.1 The Experiment set-up 
Figure 4.1 

Measurement set-up 

 

Figure 4.1 shows the experimental set-up. The water tank measures 30cm by 30cm 

by 55cm. The hydrophone is placed in the tank by a hydrophone holder that is 

attached to a manual three-dimensional positioning mechanism. This mechanism is 

attached to a sledge for automatic one-dimensional scanning, driven by a step 

motor. The hydrophone is a 0.5mm PVDF needle hydrophone from Precision 

Acoustics Ltd. (Dorchester, UK). It comes with a pre-amplifier and a power supply. 

The hydrophone including the pre-amplifier is calibrated over a bandwidth of 1-

20MHz and the sensitivity is around 200mV/MPa. A Tektronix Digital Storage 

Oscilloscope, TDS2024C, captures the signal from the pre-amplifier. A PC with 

National Instrument LabVIEW software read the data from the oscilloscope and 

E&I 

Tektronix 

AFG3022 

Function 

Precisio 

Acoustic 

Tektronix 

TDS2024

C 

PC 
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present the waveform together with the frequency spectrum on the screen. The data 

can be exported from LabVIEW as an Excel-file or as a bitmap image.  

The transducer is mechanically attached to an acoustic window in a short side of the 

tank. The excitation signal to the transducer is generated by an arbitrary function 

generator from Tektronix, AFG3022B. A power RF-amplifier from E&I (Electronics & 

Innovation Ltd., Rochester, NY, USA) Model A075 amplifies the signal. The PC 

controls the step motor through a National Instruments USB-6008. The tank system 

can also perform an automatic beam profile scan, driven by a LabView program.  

4.2 Measurements of transducer1 
Transducer1 is a transducer made of a planar circular disc of Pz27 (Ferroperm, 

Denmark) with a quarter wave matching and a light backing. The diameter of the disc 

is 12.7mm. The transducer was described in chapter 2.3, where also the impulse 

response and amplitude response were calculated. To measure the impulse 

response of a transducer, we will need an impulse as input signal. No signal 

generator can produce a pulse that is infinitely short and has infinite amplitude, but 

the signal generator can produce a pulse good enough for the purpose. Figure 4.2 

shows a generator pulse with half maximum of 40ns and Figure 4.3 its frequency 

spectrum. The -3dB frequency of the spectrum is at 9MHz. The pressure pulse must 

be measured in the focal point where the SIR is a delta function. A lens with focal 

length of 75mm was attached to the transducer and the measurements ware done at 

distance 75mm on the acoustic axis. Figure 4.4 shows the impulse response and 

Figure 4.5 the frequency response of transducer1 when excited with the 40ns pulse. 

The amplitude spectrum shows that the transducer also has a resonance 10MHz. 

This is the resonance where the piezo-electric disc is one and a half wavelength 

thick. To avoid the excitation of this third harmonic mode of the transducer, we can 

excite the transducer with a rectangular pulse of length 100ns because a 100ns 

pulse will have a frequency spectrum with a zero at 10MHz. Figure 4.6 shows the 

pulse response and Figure 4.7 shows the amplitude response of the transducer 

when excited with the 100ns pulse. The resonance at 10MHz is gone while the 

resonance at 3MHz is preserved. The resulting pressure pulse is a good imaging 

pulse and in good agreement with the simulation of the impulse response in Figure 

3.6. The impulse response calculated in Figure 3.6 is the normal front velocity of the 

transducer. We cannot measure this directly, but the pressure pulse in the focal point 

of the transducer is the time derivative of the velocity potential, which is the 

convolution of the spatial impulse response, the excitation pulse and the front 

velocity. If both the spatial impulse response and the excitation pulse are relatively 
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short compared to the front velocity, the pressure pulse will be the time derivative of 

the front velocity. The pressure pulse can under the above-mentioned conditions 

serve as a measure of the impulse response of the transducer except for a 90-

degree phase shift. 

Figure 4.2 

The impulse used as input signal for measurement of the impulse response. 

   

Figure 4.3 

The frequency spectrum of the above impulse. 
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Figure 4.4 

Impulse response of transducer 1. 

 

Figure 4.5 

Frequency response of transducer 1 excited with the 40ns-pulse. 

 



 

49 

 

Figure 4.6 

The on-axis pressure pulse of transducer1when excited with the 100ns-pulse 

   

Figure 4.7 

The frequency spectrum of the above pulse. 

 

The pressure pulse length determines the depth resolution in ultrasound imaging. 

The beam width determines the transvers resolution. In the water tank we can 

measure the beam profile of the transducer and compare it with the calculated beam 

profile using field1.m. 

Figure 4.9 through Figure 4.19 shows the calculated and measured beam profiles at 

z = 20, 30, 50, 70, 100, and 150mm of transducer1 with a planar front or infinite focal 

length. The solid curves are peak-peak pressure, and the dashed curves are pulse 

energy. The calculations shows that the beam is at its narrowest between 70 and 
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100mm. Also, the measurements show that the beam is at its narrowest between 70 

and 100mm.The dashed curves representing the pulse energy calculation and 

measurements are somewhat narrower than the peak-peak beam profiles (solid 

lines). However, the peak-peak beam profiles are the most used way of calculating 

beam width and we will therefore use these values. The depth at which the beam is 

at its narrowest is called the beam waist. The beam waist is found at depth 𝑧 = 𝑎2/𝜆 

, where a is the radius of the transducer and λ is the wavelength. For transducer1 

this gives z = 80mm. However, even at beam waist the half value diameter of the 

beam is about 7mm measured by the peak-peak value and about 4mm measured by 

the pulse energy. The agreement between the calculations and measurements are 

good in the far field, beyond beam waist. In the near field there are some differences 

probably caused by that the transducer doesn’t vibrate entirely as a piston. A 

noticeable feature of the measured beam profiles is their lack of symmetry. This must 

be due to the production of the transducer. Firstly, leads must be soldered to the 

electrodes at some point and secondly, the disc is glued to a porous backing and the 

support may not be equal over the disc area. This leads to asymmetries in the 

measurements as can be seen in Figure 4.9 and Figure 4.11. 

Figure 4.8 

Non-focused calculated beam profiles at depth z=20mm 
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Figure 4.9 

Measured beam profiles at depth z=20mm. 

 

Figure 4.10 

Calculated beam profile at depth z=30mm. 
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Figure 4.11 

Measured beam profile at depth z=30mm 

 

Figure 4.12 

Calculated beam profile at z=50mm. 
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Figure 4.13 

Measured beam profile at z=50mm. 

 

Figure 4.14 

Calculated beamprofile at z=70mm. 
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Figure 4.15 

Measured beamprofile at 70mm. 

 

Figure 4.16 

Calculated beamprofile at 100mm. 
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Figure 4.17 

Measured beamprofile at 100mm. 

 

Figure 4.18 

Calculated beam profile at 150mm. 
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Figure 4.19 

Measured beam profile at z=150mm. 

 

Figure 4.20 

 Beam profiles focused at 75mm at depth 20mm 
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Figure 4.21 

Measured beamprofile at z=20mm. 

 

 

Figure 4.22 

Calculated beam profile at z=30mm. 
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Figure 4.23 

Measured beam profile at z=30mm. 

 

Figure 4.24 

Calculated beam profile at z=50mm. 
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Figure 4.25 

Measured beam profile at z=50mm. 

 

Figure 4.26 

Calculated beam profile at z=70mm. 
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Figure 4.27 

Measured beam profile at z=70mm. 

 

Figure 4.28 

Calculated beam profile at z=100mm 
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Figure 4.29 

Measured beam profile at z=100mm. 

 

Figure 4.30 

Calculated beam profile at z=150mm. 
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Figure 4.31 

Measured beam profile at z=150mm. 

 

This is a beam with an unacceptable transversal resolution for imaging purposes. To 

improve the transversal resolution, we will need a lens to focus the transducer. A 

good lens materiel is silicon rubber because it has a speed of sound less than water 

and we can design concave/planar lens that is easy to mount on the front of a planar 

disc transducer. Elastosil 601 (Wacker, USA) was available, and the speed of sound 

was measured to be about 1000m/s. The refractive index is therefore n = 1.5, and 

the curvature of the concave face should have a radius of f/2 based on simple 

geometric optics. For imaging depths up to 150mm a good choice of focal length 

should be f = 75mm and the curvature radius should be 37mm. A molding form was 

made, and the produced lens was attached to the transducer without problems. 

Figure 4.20 through Figure 4.31 shows calculated and measured beam profiles of 

the focused transducer at depths z=20, 30, 50, 70,100, and150mm. The calculated 

first and followed by the measured. The solid curves represent the peak-peak values 

of the pressure pulses, and the dashed curves shows the pulse energies. The focus 

is 75mm and the beam waist is at about 40 – 50 mm. The half value beam diameter 

is 3mm with respect to the peak-peak measure and 2.5mm with respect to the 

energy measure at depth 50mm. This is an acceptable transversal resolution for 
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ultrasound imaging. However, the beam is broader in both the near-field and the far-

field, and this is why most ultrasound scanners use dynamic focusing. 

The measured beam profiles for the focused beam are in better agreement with the 

calculations for the focused field compared to the unfocused field. The most obvious 

deviation between the measured and calculated beam profiles for the focused beam 

is the peak at the center of the beam profile at depth 30mm. The size of the 

hydrophone and a small displacement can easily explain this deviation. 

4.3 Measurements of transducer PA75 

Transducer PA75 was manufactured by Precision Acoustics, Dorchester, UK. The 

transducer has a diameter of 15mm and a focal length of 75mm. It has no matching 

layer but has a heavy backing about six times the impedance of water. The 

transducer is also equipped with a proprietary electric matching circuit and the center 

frequency should be 2MHz. 

Figure 4.32 shows the measured pressure pulse of PA75 in the focal point. The 

pulse has a disappointing long tail. Figure 4.33 shows the frequency response of 

PA75. In the frequency spectrum we see a third harmonic, due to the 3/2 resonance 

of disc’s thickness mode. The fundamental resonance of the transducer is twin 

peaked, and this is linked to the long pulse. However, the half value bandwidth of the 

transducer is about 1.4MHz and it should therefore be possible to design a better 

image pulse by applying inverse filtering. The center frequency was measured to be 

2.3MHz. 
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Figure 4.32 

Measured impulse response of the focused transducer, PA75. The hydrophone was 

placed in the focal point of the transducer and the excitation pulse is 40ns. 

 

Figure 4.33 

Measured frequency response of the focused transducer, PA75. The hydrophone 

was placed in the focal point of the transducer and the excitation pulse is 40ns. 

 

4.3.1 Calculation of the ideal excitation pulse 

Figure 4.34 shows the filtered and extrapolated impulse response of transducer 

PA75 Figure 4.35 shows the amplitude response. To analyze the measured impulse 

response, the measured data was exported to an Excel file and read into Matlab. 

The time resolution of the measured data is 4ns and the length of the measured 

array is 2500 points or 10μs (1μs/div setting on the oscilloscope). Eight and eight 
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time points were simply added together for the first 128 points in Figure 4.32 and the 

rest of the time array was filled up with zeros up to 512 points. This gave a time 

resolution of 32ns and a frequency resolution of 61kHz.  

The next step is to select a desired imaging pulse. This is not a given, but a two-

period pulse with no tail is often considered to be a good imaging pulse. Inverse 

filtering will not work if we expect to generate a pulse with much larger bandwidth 

than the bandwidth of the transducer. The desired imaging pulse of PA75 must 

therefore be limited to a bandwidth of around 1.4MHz. For this project, a three-period 

Hanning pulse was chosen, and is given by: 

𝑢(𝑡)𝐻3 = sin(2𝜋𝑓0𝑡) (1 − cos (2𝜋
𝑓0

3
𝑡) ) ∀ 𝑡 ∈ [0, 3

𝑓0
⁄ ] 

The center frequency for transducer PA75 is f0 = 2.3MHz. Figure 4.36 and Figure 

4.37show the pulse and its frequency spectrum respectively and shows that the half 

value full bandwidth of this pulse is 1.5MHz or 65% relative bandwidth. This is 5% 

larger bandwidth than the measured relative bandwidth of the transducer PA75. The 

frequency spectrum also shows that the third harmonic at 6.8MHz should not be 

excited. 

This imaging pulse require an excitation pulse that can be found as the inverse 

Fourier transform of the frequency spectrum of the imaging pulse divided by the 

frequency response of the transducer. Figure 4.38 shows the absolute value of the 

spectrum after this inverse filtering operation. Only the absolute value is shown, but 

the calculations also include the phase. The peaks in the spectrum below 1MHz and 

above 4MHz is a result of division by a small number and should be removed. We 

can truncate the spectrum at the zeroes in the Hanning pulse spectrum at around 

0.8MHz and 3.9MHz. Figure 4.39 also shows the truncated spectrum. Figure 4.40 

shows the resulting desired excitation pulse for transducer PA75 and the response 

pulse of transducer PA75 when this excitation pulse is used. The resulting image 

pulse is similar to the desired image pulse shown in Figure 4.41, except for some 

small ripples caused by the truncation. 

A standard signal generator cannot generate the calculated excitation pulse in Figure 

4.11. The truncated frequency spectrum in Figure 4.8 shows that there are three 

dominant frequencies in the spectrum, one around 1.2MHz, another around 3.3MHz 
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and finally the most dominant around the center frequency of 2.3MHz. The excitation 

pulse also consists of these frequencies. Most of the energy in the time pulse seems 

to be contained in a one period sinus of frequency 2.3MHZ and a second one period 

sinus two periods later with an amplitude of 40% of the first. Based on these 

observations, a simplified excitation pulse was constructed. Figure 4.42 shows the 

simplified excitation pulse and Figure 4.43 shows the calculated pulse response of 

transducer PA75. This pulse is close to the desired imaging pulse in Figure 4.36 and 

must be considered as an acceptable pulse for ultrasonic imaging and 

measurements. 

Figure 4.34 

Filtered impulse response and of transducer PA75 

 

Figure 4.35 

Filtered frequency response of transducer PA75 
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Figure 4.36 

A 3-period Hanning pulse at 2.3MHz. This pulse is used as the desired imaging 

pulse in this project. 

 

Figure 4.37 

The frequency spectrum of the above Hanning-pulse. 
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Figure 4.38 

The inverse filtered spectrum resulting from transducer PA75 and the 3-period 

Hanning pulse and the spectrum  

 

Figure 4.39 

The inverse filtered spectrum resulting from transducer PA75 and the 3-period 

Hanning pulse and the spectrum, truncated at 0.8MHz and at 3.9MHz. 
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Figure 4.40 

The desired excitation pulse for transducer PA75 found as the inverse Fourier 

transform of the truncated invers filtered spectrum in Figure 4.6. To the right is the 

resulting response pulse from transducer PA75 when this excitation pulse is applied 

to the input. 

 

Figure 4.41 

The simulated pulse response with the resulting response pulse from transducer 

PA75 when this excitation pulse is applied to the input. 
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Figure 4.42 

The simplified excitation pulse for transducer PA75. 

 

Figure 4.43 

The resulting pulse response for transducer PA75 when the simplified excitation 

pulse is applied. 
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4.3.2 Measurement of simplified excitation 

pulse for PA75 

The simplified excitation pulse for transducer PA75 was constructed and stored in 

the AFG and measured in the measurement tank. Figure 4.44 shows the measured 

output from the AFG and Figure 4.45 shows its frequency spectrum. Figure 

4.46shows the measured pulse response and Figure 4.47 shows the amplitude 

response of transducer PA75 when the constructed pulse of Figure 4.46 is used as 

excitation. 

Figure 4.44 

The simplified excitation pulse designed for transducer PA75 from the function 

generator. 

 

Figure 4.45 

The frequency spectrum of simplified excitation pulse designed for transducer PA75. 
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Figure 4.46 

The measured pulse response of transducer PA75 when excited with the simplified 

excitation pulse. 

 

Figure 4.47 

The measured frequency response and of transducer PA75 when excited with the 

simplified excitation pulse. 

 

The results in Figure 4.46 show that the pulse has a minimal tail and is well suited for 

imaging and measurements. The bell shape of the frequency amplitude is linked to 

the minimal tail of the pulse through the Fourier transform. 
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4.3.3 Measurements of beam profiles of PA75 

Figure 4.48 

Calculated beam profiles of PA75 at depths z = 50mm. 

 

Figure 4.49 

Measured beam profiles of PA75 at depths z = 50mm. 
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Figure 4.50 

Calculated beam profiles of PA75 at depths z = 75mm. 

 

Figure 4.51 

Measured beam profiles of PA75 at depths z =75mm. 
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Figure 4.52 

Calculated beam profiles of PA75 at depths z = 100mm. The solid curves are peak-

peak pressure, and the dashed curves are pulse energy. 

 

Figure 4.53 

Measured beam profiles of PA75 at depths z = 100mm. The solid curves are peak-

peak pressure, and the dashed curves are pulse energy. 

 

The measured beam profiles in Figure 4.48 through Figure 4.53 are more symmetric 

than the beam profiles of transducer1. This is probably due to a better support of the 

PZT-disc for PA75 transducer. The disc is supported by a heavy backing and is 
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mounted in a metallic cylinder. The agreement with the calculations is also excellent 

and within the accuracy of 0.5mm set by the size of the hydrophone. 

4.3.4 Measurement of non-linear effects 

Non-linear effects are well known to be generated in medical ultrasound imaging. No 

model for non-linear propagation was available, so no calculations were possible. 

The non-linear effects in water and biological tissue are also known to differ. Only 

measurements in water will be presented in this report.  

To generate significant harmonics in water, a 4-period Hanning pulse with center 

frequency 2MHz was used. The peak-peak voltage was 400V. Figure Figure 4.54 

shows the pressure pulse, andFigure 4.55 its frequency spectrum measured in the 

focal point. The non-linear effects are obvious. The pressure pulse has sharp 

positive peaks with almost a shock wave formation in front of the highest peak while 

the negative peaks have lower amplitude. The frequency spectrum shows the first 

harmonic centered at 2.1MHz and the second harmonic centered at 4.2MHz and 

several higher harmonics. 

Two Butterworth filters (8th order) were made to separate the 1st harmonic (1-3MHz) 

and the 2nd harmonic (3-5MHz) pulses. The outputs from the two filters are shown in 

Figure 4.56 and Figure 4.58. Figure 4.56 shows the pulse of the first harmonic and 

Figure 4.57its frequency spectrum. Figure 4.58 shows the pulse of the second 

harmonic and Figure 4.59 its frequency spectrum. 



 

77 

 

Figure 4.54 

The pressure pulse measured at the focal point. 

 

 

Figure 4.55 

The frequency spectrum measured at the focal point. 
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Figure 4.56 

The 1st harmonic pulse separated by a 8th- order butterworth filter (1-3MHz) 

c  

Figure 4.57 

The frequency spectrum of the 1st-harmonic. 
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Figure 4.58 

The 2nd-harmonic pulse separated from the pulse in Figure 4.16 by an  

8-order Butterworth filter (2-5MHz). 

 

Figure 4.59 

The 2nd-harmonic frequency spectrum. 

 

We can see from the frequency spectra that the first and second harmonics are well 

separated from each other and well separated from the higher harmonics. This 

separation technique was used to separate the measurements of the first harmonic 
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beam profile and the second harmonic beam profile. Figure 4.60, Figure 4.61 and 

Figure 4.624.21 shows the beam profiles measured at depth 50mm. Figure 4.60 

include all frequencies of the field, Figure 4.62 include only the first harmonic 

component of the field, and Figure 4.61 include only the second harmonic 

component of the field. Figure 4.64 shows the beam profile at depth 75mm for all 

frequencies. Figure 4.65 shows the beam profile at depth 75mm for the 1st-harmonic 

and Figure 4.66 the 2nd-harmonic. Figure 4.67, Figure 4.68, and Figure 4.69 show 

the beam profiles at depth 100mm for all frequencies, the 1st-harmonin and 2nd-

harmonic, respectively. 

The solid curves in all plots are the peak-peak pressure and the dashed curves are 

the pulse energy. As expected, the beam profiles of the second harmonic are 

significantly narrower than the beam profiles of the first harmonic. This is also one of 

the reasons why second harmonic imaging has become so popular in medical 

imaging. The higher harmonics are not of the same interest due to the limited 

bandwidth of the imaging transducers in use. 

Figure 4.60 

Aii frequency beam profile at depth 50mm 
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Figure 4.61 

1st-harmonic beam profileat 50mm 

 

Figure 4.62 

1st-harmonic beam profile at depth 50mm 
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Figure 4.63 

The measured 2nd harmonic beam profiles at depth 50mm  

 

Figure 4.64 

All harmonics beam profile at depth 75mm. 
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Figure 4.65 

The 1st harmonic measured beam profiles at depth 75mm, focal plane..  

 

Figure 4.66 

The 2nd-harmonic measured beam profiles at depth 75mm, focal plane.  
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Figure 4.67 

All harmonics measured beam profiles at depth 100mm 

 

Figure 4.68 

The 1st-harmonic measured beam profiles at depth 100mm.  
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Figure 4.69 

The 2nd-harmonic measured beam profiles at depth 100mm. 

 

4.3.5 Pulse inversion 

An alternative to use filters to separate the harmonics is to apply pulse inversion. 

Pulse inversion is a method that involves two transmitted pulses where the second 

pulse is the negative of the first. At receipt the two pulses are added and if the pulse 

propagation is linear the result will be zero. However, if the pulse propagation is non-

linear, we will end up with even harmonic components after adding the two pulses. 

The two transmitted pulses are related as follows: 

𝑝2(𝑡) = −𝑝1(𝑡) 

The received pressure field can be written as a Taylor series to account for non-

linear effects:  

�̂�(𝑡) = 𝑎1𝑝(𝑡) + 𝑎2𝑝2(𝑡) + 𝑎3𝑝3(𝑡) + 𝑎4𝑝4(𝑡) + 𝑎5𝑝5(𝑡) + ⋯ 

When the two pulses are added, all odd factors will cancel, and the result is a sum of 

the even factors: 

𝑝1̂(𝑡) + 𝑝2̂(𝑡) = 2𝑎2𝑝2(𝑡) + 2𝑎4𝑝4(𝑡) + ⋯ 
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In terms of frequency, this means that we are left with only the even harmonics. In 

practice, mainly the second harmonic, due to the limited bandwidth of imaging 

transducers. 

Figure 4.22 shows the measured double pulse with the hydrophone at the focal point 

of transducer PA75. The second pulse is delayed by 15μs and is the negative of the 

first. 

Figure 4.23 shows the added pulses when the first pulse is delayed by 15μs. The 

result is non-zero and indicates that there are non-linear effects in the pulse 

propagation. 

Figure 4.24 shows the absolute value of the Fourier transform of the added pulses in 

in Figure 4.23. The amplitude spectrum shows that most of the power is 

concentrated around 4MHz, twice the frequency of the transmitted pulses. 

Figure 4.70 

Measured double pulse where the second pulse is delayed 15μs and is negative of 

the first pulse. 
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Figure 4.71 

The added pulses after delaying the first pulse by 15μs. 

 

Figure 4.72 

Amplitude spectrum of the added pulses in Figure 4.21. 
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4.4 Measurements of transducer 

PAplan 

Transducer PAplan is also produced by Precision Acoustics, Dorchester, UK. The 

transducer has a diameter of 15mm and a planar front. It has one quarter-wave 

matching layer and air backing.  The transducer is also equipped with a proprietary 

electric matching circuit and the center frequency should be 2MHz. For the 

measurements a lens with focal length of 75mm was attached at the front. 

Figure 4.73 

Pressure pulse of PAplan measured in the focal point at depth 75mm with a 40ns 

pulse excitation. 

  :   
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Figure 4.74 

The amplitude spectrum of PAplan measured in the focal point at depth 75mm with a 

40ns pulse excitation. 

 

Figure 4.75 

Pressure pulse of PAplan measured in the focal point at depth 75mm with a 150ns 

pulse excitation. 
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Figure 4.76 

The amplitude spectrum of PAplan measured in the focal point at depth 75mm with a 

150ns pulse excitation. 

 

Figure 4.25 shows the measured pressure pulse and the amplitude spectrum in the 

focal point. The excitation pulse is the short pulse of length 40ns. We see that also 

for this transducer a third harmonic is excited by the short pulse at frequency 

6.6MHz. A rectangular excitation pulse of length 150ns will have a zero in its 

frequency spectrum at 6.66MHz (= 1/150ns). Figure 4.26 shows the pulse response 

and the amplitude response when the transducer is excited with the 150ns-pulse. 

The result is a pulse well suited for imaging and measurements. 

Figure 4.27 shows the measured beam profile of the unfocused PAplan at the depth 

of beam waist (𝑧 = 𝑎2 𝜆⁄ = 75mm). The solid curve shows the measured peak-peak 

values, and the dashed curve shows measured pulse energy. 

Figure 4.28 shows the calculated beam profile under the same conditions as the 

measured beam profile in Figure 4.27. 
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Figure 4.77 

Measured beam profile of the unfocused PAplan through beam waist (z=75mm) 

 

Figure 4.78 

Calculated beam profile of the unfocused PAplan through beam waist (z=75mm). 
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4.4.2 Design and test of lenses for PAplan 

Transducer PAplan is unfocused and need an additional lens to work well for 

measurements and imaging. A lens of silicon rubber was made similar to the 

description in Chapter 4.2. The focal length was chosen to be 75mm and the 

curvature radius of the concave side should therefore be 37mm. The diameter of the 

lens should be 15mm to fit the transducer. 

The lens was tested by measuring the acoustic field along the acoustic axis of the 

transducer PAplan with and without the silicon lens attached. The measurements 

were compared to calculations with the MATLAB program fieldL.m. For comparison 

also the PA75 transducer with a fixed focus was measured. The measurements are 

shown as circles and the calculations as solid lines. 

shows the measured and calculated peak pressure field of the unfocused transducer 

PAplan. The measured and calculated values are normalized in the far field at z = 

150mm. For this transducer, the beam waist should be at depth z = 75mm. This is 

also close to where the pressure is at its maximum. Proximal to the beam waist, the 

calculated field has huge variations over short distances. The measurements done 

with a hydrophone with diameter 0.5mm will partially integrate over these spatial 

variations. 

Figure 4.80 shows the measured and calculated pressure along the acoustic axis of 

transducer PAplan with an attached lens of focal length 75mm. The maximum 

pressure for both the measurement and the calculation is at depth z= 45mm. 

Figure 4.81 shows the measured and calculated pressure along the acoustic axis of 

transducer PA75 which has a focal length of 75mm. The maximum pressure for both 

the measurement and the calculation is at depth z= 45mm. 
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Figure 4.79 

Measured and calculated peak pressure along the acoustic axis of unfocused 

transducer PAplan without any lens. 

 

Figure 4.80 

Measured and calculated peak pressure along the acoustic axis of transducer 

PAplan with a lens with a focal length of 75mm. 
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Figure 4.81 

Measured and calculated peak pressure along the acoustic axis of the transducer 

PA75 with a focal length of 75mm. 

 

Comparing the two last measurements and calculations in Figures 4.30 and 4.31 

indicates that the lens works as it should. 

4.5 Measurements of transducer PATR 

Transducer PATR was also designed and made by Precision Acoustics Ltd. The 

transducer was custom designed for both transmit and receipt. It has a PZT ceramic 

resonant at 2MHz and a quarter wave matching layer at the front made of PVDF that 

also function as a receiver. The diameter of the transducer is 15mm and it is 

unfocused. This transducer was built to measure reflections of the transmitted pulse 

from objects in the water tank. 

The lens with focal length 75mm was attached to the front of the transducer. Figure 

4.32 shows the measured pressure pulse in the focal point when the transducer is 

excited with 40ns pulse. Figure 4.33 shows the Fourier transform of the pulse and is 

the frequency response of transducer PATR. 
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Figure 4.82 

Pressure pulse measured at the focal point of transducer PATR. 

  

Figure 4.83: Amplitude spectrum measured at the focal point of transducer PATR. 
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Figure 4.84 

Measured beam profile in the focal plane of focused transducer PATR. 

 

4.5.2 Inverse filtering applied to transducer 

PATR 

The impulse response and the frequency response of transducer PATR as shown in 

Figures 4.32 and 4.33 were not as expected. The pulse has a big tail, and this is 

linked to the twin-peaked appearance of the frequency spectrum. To compensate for 

the twin-peaked spectrum, an inverse filter was computed, and a compensating 

excitation pulse was found like in Chapter 4.3.1. The calculated excitation pulse was 

loaded into the AFG and used to excite transducer PATR. 
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Figure 4.85 

Measured excitation pulse for PATR transmitted from the AFG. 

 

Figure 4.86 

The frequency response of the inverse filter for transducer PATR. 

 

Figure 4.36 shows the frequency response of the inverse filter used to compensate 

for the twin-peaked frequency response of transducer PATR. The peaks at 2MHz 

and 3MHz are compensated by the dips at the same frequencies in the frequency 

response of the inverse filter. Figure 4.35 shows the resulting pressure pulse at focus 

when the above excitation pulse is used. The tail of the pulse is much smaller 
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compared to the pulse in Figure 4.32. Figure 4.38 shows the frequency response of 

the transducer including the inverse filter. The amplitude has a single peak. 

Figure 4.87 

Measured pressure pulse at focus when the inverse excitation pulse is used. 

   

Figure 4.88 

Frequency response of transducer PATR including the inverse filter. 
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4.5.3 Measurement of reflection 

Transducer PATR was designed for measurements of reflections with the PZT layer 

as transmitter and the PVDF layer as receiver. To test the round-trip performance, a 

brass object was made. The brass object was made of a cylinder of diameter 8mm 

and made conical in one end so that the smaller end has a diameter of 1.2mm and 

therefore an area of 1 square millimeter. The area of the large end is 50 square 

millimeters. The measurements were done with a lens of focal length 75mm attached 

to the transducer. Figure 4.39 shows the measured reflex pulse when the small end 

of the brass object was placed in the focal plane, z = 75mm, and Figure 4.40 shows 

its frequency spectrum. The signal level in this measurement is relatively low and we 

see a considerable level of noise in the measured reflex pulse. The pulse has been 

prolonged with approximately half a period compared to the pulse measured with the 

hydrophone in Figure 4.37. The center frequency of the reflex pulse is at 3MHz, 

while the center frequency of the transmitted pulse is at 2.5MHz, see Figure 4.38. 

The brass object was also measured with the large end towards the transducer. 

Figure 4.41 shows the reflex pulse from the large end placed in the focal plane, z = 

75mm, and Figure 4.42 shows its frequency spectrum. The signal to noise ratio is 

considerRably increased in this measurement due to the larger reflector. The reflex 

pulse in Figure 4.41 has a phase shift of 90 degrees but is not prolonged compared 

to the transmitted pulse shown in Figure 4.37. The center frequency of the reflex 

pulse is 2.5MHz as was the case with the transmitted pulse, see Figure 4.42. 

The receiver characteristics of the transducer PATR is not known, but it was 

assumed that the frequency response should be relatively constant over the 

frequencies between 1 and 3 MHz. A point reflector in the focal point should 

therefore give a reflex pulse equal to the transmitted pulse in Figure 4.37 and a 

frequency spectrum equal to the spectrum in Figure 4.38. However, the small end is 

not a point object, and the reflectors directivity will be a function of the frequency. 

The transmitted frequency of the transducer is significant between 1.5MHz and 

3.5MHz and the directivity will increase with a factor of 5 between 1.5MHz and 

3.5MHz. This is why the frequency spectrum in Figure 4.40 has a center frequency 

around 3MHz.  

The larger end of the brass object work as a plane reflector. The diameter of 8mm 

covers most of the beam as shown in Figure 4.34 where the beam diameter at focus 

is about 4mm. The directivity of a plane reflector is not frequency dependent. The 
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frequency spectrum in Figure 4.42 is therefore almost the same as the frequency 

spectrum of the transmitted pulse in Figure 4.38. The reflected pulse in Figure 4.41 

will therefore be used as the reference pulse for the reflection measurements. 

Figure 4.89 

Reflexpulse from the small end of the brass object 

 

Figure 4.90 

Frequency response from the small end of the brass object. 
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Figure 4.91 

Reflex pulse from the large end of the brass object. 

 

Figure 4.92 

Frequency spectrum of reflex pulse from the small end of brass object. 
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4.5.4 Measurement of thickness 

The reflected pulse from the larger brass object is a well-defined short pulse without 

a disturbing tail. The transducer is therefore well suited for measuring thickness of 

semi-transparent objects. The thickness of objects that we put in a water tank can be 

measured up front and rather than measuring the thickness, we can calculate the 

speed of sound in the material at hand by measuring the time delay between the two 

reflections. In biological tissue, however, we normally assume a speed of sound and 

the time delay between reflections can be used to measure thickness. An example is 

measurement of the intima media thickness (IMT) of the carotid artery for detection 

of cardiovascular disease.  

Four different plastic plates were measured. They were lined up in the water tank, at 

the focal plane of the transducer, and they were adjusted to give maximum reflection 

back to the hydrophone. The signal was recorded with the digital storage 

oscilloscope, and an attempt was made to do amplitude detection of the signal as 

well as detection by deconvolution of the measured reflections. 

The first plastic plate was PMMA (polymethyl methacrylate) with thickness 1.8mm. 

Figure 4.43 shows the reflection measurement. The recorded signal consists of two 

pulses. The first pulse is a reflection from the water/plastic interface and the second 

is from the plastic/water interface. The first pulse is positive, and the second negative 

as compared to the reflected pulse in Figure 4.41. Thus, we can conclude that the 

plastic has a higher acoustic impedance than water. Figure 4.44 shows the 

amplitude detected signal. The signal is multiplied by the center frequency and low 

pass filtered with the center frequency as cut-off frequency. The time delay between 

the two reflections is 1.6µs. The thickness of the plate is 1.8mm. The speed of sound 

in the plastic is therefore (2x1.8mm/1.6µs) = 2250m/s. This is reasonable for a 

relatively hard plastic as PMMA. The density of PMMA is around 1200kg/m3 and the 

acoustic impedance is 2.76Mrayl. The reflection coefficient of the water/PMMA 

interface becomes (2.76-1.5)/(2.76+1.5) = 0.30 or 30%.  
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Figure 4.93 

Measured reflection from the PMMA of thickness 1.8mm  

 

Figure 4.94Amplitude detected measurement of reflections from a 1.8mm thick plate 

of PMMA. 
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Figure 4.95 

Reflection from the 0.75mm PS plate 

 

The second plastic plate is of Polystyrene (PS) and is 0.75mm thick. Figure 4.45 

shows the measurement. The two pulses are now so close that they interfere with 

each other, but the peak values can still be identified. The time delay between the 

two reflections is around 0.65µs and this is also the approximate pulse length of the 

transducer and therefore at the resolution limit. Using this measurement, we find that 

the speed of sound in PS is around 2300m/s. Figure 4.46 shows the amplitude 

detected measurement and the two peaks are barely separable. 

Figure 4.96 

Amplitude detected measurement of reflections from a 0.75mm thick plate of PS.  
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Figure 4.97 

Measured reflection from the 0.3mm thick plastic sheet 

 

The third plastic came from a plastic packaging of unknown material, but possibly 

also polystyrene. It was measured to be 0.3mm thick. Figure 4.47 shows the 

measurements. The two pulses are fully interfered and cannot be separated, but we 

observe that the amplitude of the pulse in Figure 4.46 is twice that of the pulses in 

Figure 4.43. This indicates that there is fully constructive interference between the 

positive and negative pulse. The pulse is only half a period longer than the single 

reflections and this indicates that the time delay of the second negative pulse is one-

half period of the signal. At 2.5MHz, the period is 0.4µs and the time delay between 

the two pulses is 0.2µs. The amplitude-detected signal in Figure 4.48 is single 

peaked and the two reflections are not resolved. The width of the signal is however 

approximately 0.2µs wider than the widths of the peaks in Figure 4.44, also 

indicating that the pulse is half a period longer. A thickness of 0.3mm and a time 

delay of 0.2µs gives a speed of sound in this plastic of 3000m/s, but the uncertainty 

of the measurement is large and the uncertainty of the speed of sound measurement 

is 3000±1000m/s. 
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Figure 4.98 

Amplitude detection of the measurement of reflections from a 0.3mm thick plastic. 

 

4.5.5 Detection of thickness by deconvolution 

The method of deconvolution or inverse filtering has a potential of improving the 

resolution of the thickness measurement. However, inverse filtering involves the 

division of a measured frequency response with a reference signal and the 

frequency response of the reference may be zero within the bandwidth of interest. A 

bandwidth limitation may therefore be required, and this will in turn compromise the 

resolution of the method.  

As a reference reflex signal, the reflex from the hydrophone holder was used. The 

hydrophone holder is made of PMMA and should therefore give a reflex that is 

similar to the chosen objects. The hydrophone holder is an inch thick and the first 

reflex from the water/plastic interface is easy to separate. The reflex and its 

frequency spectrum are shown in Figure 4.49. 
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Figure 4.99 

Measured reference pulse used for deconvolution of the measured objects. 

 

Figure 4.100 

Measured reference frequency spectrum used for deconvolution of the measured 

objects. 

 

Inverse filtering is a technique that in theory shall expand the bandwidth of the 

measurement by using the reference as a correcting frequency spectrum. We can 

compensate for the limited bandwidth by dividing the measured signals frequency 

spectrum with the reference frequency spectrum. Let us call the measured signal 

from the object, x(t), and its Fourier transform, X(f). Likewise, we call the reference 

signal, r(t), and its Fourier transform, R(f). The resulting frequency spectrum after 

inverse filtering of the measured signal is given by: 

𝑌(𝑓) = 𝑋(𝑓)/𝑅(𝑓) 
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The resulting time domain signal is: 

𝑦(𝑡) = ℱ−1 {
𝑋(𝑓)

𝑅(𝑓)
} 

the inverse Fourier transform of the ratio between the measured spectrum signal and 

the reference spectrum. This result, y(t), is also called the deconvolution of x(t) with 

respect to r(t). In theory, the result should be an impulse function at each reflecting 

surface of the object. However, the reference signal is bandlimited and the division 

with R(f) will result in division with zero or values close to zero. The division with the 

reference must therefore be limited to a bandwidth where R(f) has a significant 

value. Figure 4.49 shows that R(f) has a significant value only between 1 and 4MHz.  

The reflected signal from the 1.8mm thick plate of PMMA was shown in Figure 4.43. 

The first reflection from the water/plastic-interface and the second reflection from the 

plastic/water-interface are well separated. As a first test of the method with 

deconvolution, this object was chosen. Figure 4.50 shows the frequency spectrum of 

the measured signal from the object as the solid line and the frequency spectrum of 

the reference signal as the dashed line. The transducer bandwidth is evident in both 

spectra, between 1 and 4MHz. However, some signal of interest is also apparent 

over the bandwidth between 0 and 5MHz. The spectrum was therefore rounded off 

with a half period sine function between 0 and 5 MHz: 

𝑊(𝑓) = sin (
𝜋𝑓

5𝑀𝐻𝑧
) 
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Figure 4.101 

The frequency spectrum of the reflected signal from the 1.8mm PMMA object (solid 

line) and the frequency spectrum of the reference signal from the hydrophone holder 

(dashed line). 

 

Figure 4.51 shows the frequency spectrum after inverse filtering of the signal from 

the object. This is the spectrum of the signal, X(f), divided by the spectrum of the 

reference signal, R(f), and multiplied with the window function, W(f). 

𝑌(𝑓) =
𝑋(𝑓)

𝑅(𝑓)
𝑊(𝑓) 
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Figure 4.102 

Spectrum of the inversely filtered reflection from the 1.8mm PMMA object. 

 

Figure 4.103 

The deconvolved reflex from the 1.8mm PMMA object. 

 

Figur 4.50 shows the deconvolved signal from the 1.8mm PMMA object, which is 

found by taking the inverse Fourier transform of the spectrum in Figure 4.51. The 

first positive reflection and the second negative reflection is evident in Figure 4.52. 
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The time delay between the two reflections is 1.6µs. The speed of sound in this 

PMMA material is therefore 2250m/s. The same time delay was also measured from 

the original signal from the 1.8mm PMMA object in Figure 4.53. This was possible 

due to the good separation of the first and the second reflection.  

To test the method further, we look at the reflex from the 0.75mm polystyrene object. 

The first and the second reflection from this object was hardly resolved in Figure 

4.45. Figure 4.53 shows the result of the deconvolution method described above. In 

this case, it is easy to distinguish the first positive and second negative reflection 

from the object. The time delay between the two reflections is 0.64µs and the 

calculated speed of sound in polystyrene is 2340m/s. 

To test the resolution of the thickness measurement, the reflections from a packing 

material of thickness 0.3mm was measured. Figure 4.47 showed the measurement. 

In this case, the first and second reflection were not separable. Figure 4.54 shows 

the result after deconvolution, following the same procedure as describe above. The 

measured time delay between the first and second reflection is 0.24µs. The speed of 

sound in this material is therefore 2500m/s.  

Finally, an even thinner plastic material was measured. A plastic sheet foil used for 

overhead projectors was measured to a thickness of only 0.13mm. Figure 4.55 

shows the measured reflection from the foil and Figure 4.56 shows the measured 

reflection after deconvolution. The measured time delay between the positive and 

the negative peak in the signal is 0.155µs. Using this time delay to estimate the 

speed of sound in this plastic material, give a speed of sound equal to 1680m/s. This 

estimate is most likely to low, and this is probably due to interference between the 

two reflections and that the time resolution of the measurement is inadequate for this 

object. 
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Figure 4.104 

Deconvolved reflex from the 0.75mm polystyrene object. The time delay between 

first and second reflection is measured to be 0.64µs. 

 

Figure 4.105 

Deconvolved reflex from the 0.3mm packing object. The time delay between first and 

second reflection is measured to be 0.24µs. 
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Figure 4.106 

Measured reflection from the thin foil of only 0.13mm thickness. 

 

Figure 4.107 

Deconvolved reflex from foil 0.13mm thick. The time delay between the positive and 

the negative peak is 0.155µs. 
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5 Discussion and Conclusions 

This report is a summery of my ultrasound activity at Oslomet. The most important 

result is the development of the novel numeric algorithm for calculating the spatial 

impulse response of an arbitrary source. There are numerous analytic solutions for 

calculating the spatial impulse response, but they are only piecewise analytic and 

special precautions must be taken at the critical timepoints where the analytic 

functions intercept. A numeric algorithm work for all source functions, but the 

calculation time will be larger. The bottleneck in the numeric calculation is the 

calculation of R, the distance from each source element to the observation point. The 

calculation time is therefore proportional with the number of source elements. The 

source elements must be smaller than half the wavelength, but to reduce numeric 

noise the element size is often selected even smaller. The novel numeric method 

presented in this report reduce the numeric noise with the method of weighted 

binning and the element size can therefore be set to the limit of half a wavelength of 

the highest frequency in question. The method of weighted binning can therefore 

reduce the calculation time with a low noise level. Chapter 3.1 qualify the method 

and is used in all calculations of pulsed fields in this report. 

The measurement tank was built up over time and it is the final version that is 

described in Chapter 4.1. The measurements were read from Labview in most 

cases, but the time-pulses could also be read from the oscilloscope and processed 

in Matlab. Many of the measurement of pulses and beam profiles were done to 

qualify the calculation. Most of the measurements and calculations were in excellent 

agreement with a few exceptions linked to the individual transducers. 

The first transducer, named transducer 1, was my 40 year old Dr.ing.-transducer. 

The impulse response and the beam profiles were in good agreement with theory, 

except in the near field. This was most likely due to asymmetric support of the PZT 

disc and soldering of the leads. 

The hydrophone and the three other transducers were all produced by Precision 

Acoustics (Durham, UK). The hydrophone including a preamplifier was calibrated for 

frequencies between 1 and 20MHz and the sensitivity was 200mV/MPa at 2-3MHz. 

The hydrophone had a diameter of 0.5mm and this is therefore the spatial resolution 

of the measurements. 
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The first transducer from PA was the focused transducer with heavy backing and no 

front matching named PA75. The intension of this transducer was to generate non-

linear effects. The first measurement was to find its impulse response and the 

frequency response. It came out as a surprise that this transducer had a twin-peaked 

frequency response. A transducer like this should have a maximum response at the 

center frequency and monotonically fall of towards lower and higher frequencies. 

The twin peaked frequency response must therefore be caused by the proprietary 

impedance matching network. Anyway, a twin-peak frequency response results in a 

pulse response with a significant tail as seen in Figure 4.32. A tailor-made excitation 

pulse was therefore designed and applied in the measurements. The resulting pulse 

response in Figure 4.34 shows that this technic of inverse filtering worked well as the 

pulse response has virtually no tail. The measured and calculated beam profiles in 

Figure 4.12 through Figure 4.19show excellent agreement for the main lobe, but for 

the of-axis field there are some disagreements. The measurements are symmetric 

but at a higher level than the calculations. The transducer seems therefore to vibrate 

in symmetric modes, but not only as a piston. 

Harmonic effects of ultrasound propagation were studied by turning the output 

voltage of the amplifier up 10-fold to 400Vpp. The non-linear effects are evident in 

pulse in Figure 4.54 and the frequency spectrum of the pulse shows several 

harmonics. Ultrasonic transducers for imaging are band limited and only the second 

harmonic is of practical importance. Two 8th-order Butterworth filters were designed 

in Labview to separate out the first and second harmonics. The separated pulses 

and their frequency spectrums are shown in Figure 4.56 through Figure 4.59. These 

filters were applied when the beam profiles were measured. The first harmonic beam 

profiles look much like the beam profiles measured under linear condition. The 

second harmonic beam profiles are narrower also as expected. No software for 

calculating non-linear propagation was available, so it is difficult to draw any 

conclusions on the quality of these measurements. The pulse inversion technique is 

an alternative to using filters. 

The second transducer from Precision Acoustics was an unfocused transducer with 

a quarter wave matching layer in front and air backing, PAplan. This transducers 

pulse response and frequency response are shown in Figure 4.73 and Figure 4.74. 

Except for the excitation of a third harmonic, this transducer gives a short pulse well 

suited for imaging. To eliminate the third harmonic, the transducer was excited with a 

rectangular pulse of 150ns. The frequency spectrum of a rectangular pulse will have 

zeros at frequencies f=n/T, where T is the pulse length and n=1, 2, 3… For T=150ns 
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the first zero is at f=1/150ns=6.7MHz. When this excitation pulse is used, we see in 

Figure 4.75 and Figure 4.76 that the third harmonic is gone.  

Figure 4.77 shows the beam profile through beam waist at z=75mm where the beam 

is at its narrowest. The beam diameter is more than 6mm and this transducer must 

be focused with a lens. The lens was made of a silicon rubber and attached to the 

front of the transducer.  The lens was tested by calculating and measuring the on-

axis field. The PAplan with the lens performed equal to PA75.  

The last transducer from Precision Acoustics was designed to measure reflections 

from objects in the water tank. The transmitting transducer is a half wavelength PZT 

element with diameter 15mm. In front the transducer has a PVDF layer designed as 

a quarter wave matching layer. The PVDF layer also work as the receiver of 

reflections. The impulse response and the frequency response of this transducer is 

shown in Figure 4.82 and Figure 4.83. The twin-peaked frequency response and the 

lager tail of the pulse show that the acoustic matching did not work as expected. An 

excitation pulse was design with the method of inverse filtering. The outcome was a 

relatively complex pulse shown in Figure 4.85, but when used as the excitation 

pulse, the pulse response and frequency response of the transducer were improved 

as shown in Figure 4.87Figure 4.88 This excitation pulse and a lens with focal length 

75mm were used in the following measurements of reflections. 

A brass cylinder was used as a test object for the reflection measurements. The 

cylinder was 8mm in diameter and made conical in one end so that the diameter at 

the tip was 1.2mm. Thus, we had a plane reflector with a small end that was 1.2mm 

in diameter and a large end that was 8mm in diameter. The center frequency of this 

transducer is 2.5MHz and the wavelength is 0.6mm. The small end is 2 wavelengths 

in diameter and the directivity of the object therefore has a strong frequency 

dependence and is not suitable as a test object. The large end covers most of the 

beam in focus, as can be seen from the beam profile in Figure 4.84. This end is 

therefore suited as a test object. The measured reflection pulse and its frequency 

spectrum is shown in Figure 4.91 and Figure 4.91.The result is similar to the 

measured pulse response and frequency response of the transmitting transducer. 

This implies that the frequency response of the receiver is frequency independent 

over the frequency band in question.  

To test the depth or time resolution of the transducer several planar plastics were 

measured. The plastics had a measured thickness of 1.8mm, 0.75mm, 0.3mm and 
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0.13mm. Two detection methods were used to detect the time difference between 

the two reflected pulses, amplitude detection and deconvolution. Deconvolution 

turned out to give the best resolution. The plastic of thickness 0.3mm gave a time 

delay between the two pulses of 0.24μs and the plastic of thickness 0.13mm gave a 

time delay of 0.16μs. The last one with a degree of uncertainty. The time resolution 

was therefore estimated to be 0.2μs. At frequency 2.5MHz the period is 0.4μs, 

implying that the time resolution is one half period when using deconvolution to 

detect the reflected pulses.   
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Appendix: Program code 

Figure A.1 

Overview of programs for calculation of pulsed ultrasonic fields. 

 

Generate front velocity of 

source:1: transducer1.m:Physical 

model of transducer;2: 

frontvel.m:Mathematical 

definition of pulse. 

Output: vfront(nft) 

Define source shape:1: 

disc1.m:Circular disc of 

radius r0max2: 

rect1.m:Rectangular disc 

of size Lx by Ly; Output: 

A(nx,ny) and tau(nx,ny) 

field0.m:Calculat

es pressure at 

an observation 

point as function 

of time. 

Output: p(t) at 

the observation 

point (x,y,z) 

field1.m:Calculate

s pressure along 

x-axis 

perpendicular to 

acoustic axis in 

the image plane 

as function of time 

or as beam 

profile(p-p). 

Output: p(x,t) 

field2.m:Calcula

tes p-p pressure 

in the image 

plane (xz-

plane). 

Output: p(x,z) in 

image plane (y=0) 

fieldL.m:Calculates 

p-p pressure along 

acoustic axis (z-

axis)Output: p(z) 

along acoustic axis 

(x=0, y=0) 

fieldT.m:Calcula

tes p-p pressure 

in a plane 

perpendicular to 

the acoustic 

axis.Output: 

p(x,y) with z 

constant 



 

 

Figure A.1 shows an overview of the programs used to calculate the pulsed 

ultrasonic fields. The pulsed fields are calculated for different observation geometries 

with the different field programs. They all use the same numeric algorithm that is 

based on weighted binning. But prior to embarking on the field calculation, the 

source must be defined. The source is defined by the normal velocity on the front of 

the source and by the shape of the source surface. The normal velocity of the source 

can be generated by two different programs. The simplest program is frontvel.m. 

This program is just a mathematical description of a pulse that is used in the 

following calculations. A more complex program is transducer1.m. This program is a 

mathematical model of a thin disc piezo-electric disc. The program calculates the 

electric input impedance of the transducer, the frequency response from the electric 

port to the front velocity of the transducer and the corresponding impulse response 

of the transducer. This impulse response is used as the front velocity in the following 

calculations. This require that the transducer is excited with an impulse at the electric 

port. 

The shape of the source front must also be defined before calculating the field. In 

medical ultrasound, two different shapes are in regular use. These are circular disc 

transducers and rectangular transducers as phased arrays or linear arrays. A circular 

disc transducer can be defined with the program disc1.m. The inputs to this program 

are the diameter of the disc and the focal length of the disc. A rectangular transducer 

can be defined with the program rect1.m. The inputs to this program are the length 

and the width of the transducer front as well as the focal length in azimuth and 

elevation. 

When the source is properly defined, the field calculations can start. The parameters 

and the results from the source definition programs must be stored in the working 

space of MATLAB. The pressure field is a function of the observation coordinates, 

(x,y,z), as well as time, p(x,y,z,t). In order to present the calculations, the 4-

dimensional function is simplified by calculating the field along characteristic axis and 

planes. The time dimension is in most calculations reduced to a peak-peak value of 

the pressure. The spatial axes are standardized, so that the z-axis is the acoustic 

axis starting at the center of the source and the x-axis is defining the image plane, so 

that the xz-plane is the assumed image plane of a 2D-ultrasound scanner. The 

program field0.m calculates the pressure field in a single observation point as 

function of time, p(t). The program field1.m calculates the pressure field along the x-

axis at a given z-position. The field is presented as a pulse in space as a function of 

time or as a beam profile as peak-peak pressure. The program field2.m calculates 

the peak-peak pressure in the image plane, p(x,z). The field is presented as a 

contour plot or a beam in space. The program fieldL.m calculates the pressure field 

along the acoustic axis, p(z), and presents the peak-peak value. Finally, the program 

fieldT.m calculates the pressure field transversal to the acoustic axis at a given 



 

 

depth, p(x,y). The field is presented as a contour plot of the peak-peak pressure. 

This is to accommodate the rectangular shaped sources, for circular sources the 

transversal field will be circular symmetric.  

A.1 Transducer1.m 
This program utilizes a simple one-dimensional model of a thin disc piezo-electric 

transducer. The model is referred to as the KLM-transmission line model after 

Krimholtz, Leedom and Matthaei [16]. The transducer is modelled as a transmission 

line with a half period length at the design frequency. The electro-acoustic coupling is 

modelled at the center of the disc, see Figure A.2. 

Figure A.2 

The KLM-transmission line model of a thin disc piezoelectric transducer 

 

Here the following definitions and notations are used: 

Wavenumber:  𝑘0 = 𝜔√𝜌 𝜅⁄  

Angular frequency: ω 

Mass density:  ρ 

Compressibility:  κ 

Angular thicknesfs: 𝜃 = 𝑘0𝑡ℎ 

Thickness of disc: th 



 

 

Acoustic Impedance: 𝑍0 = 𝑘0𝜅𝐴/𝜔 

Area of disc:  A 

Capacitance:  𝐶0 = 𝜀0𝜀𝐴/𝑡 

Dielectric constant: 𝜀0𝜀𝑆  (constant strain) 

Coupling factor:  𝑁 = ℎ𝐶0 = 𝐶0/𝑑33 

Piezoelectric constant: ℎ = 1/𝑑33 

Backing impedance: 𝑍𝐵 

Load impedance: 𝑍𝐿 

Front port force: 𝑉1 

Velocity into front port: 𝐼1 

Back port force:  𝑉2 

Velocity into back port: 𝐼2 

Voltage at electric port: 𝑉3 

Current into electric port: 𝐼3 

The equivalent circuit in Figure A.2 can be used to calculate the electric input 

impedance of the transducer as: 𝑍𝑖𝑛(𝜔) = 𝑉3(𝜔)/𝐼3(𝜔). 

The frequency response from voltage at the electric port to the acoustic velocity at 

the front port can be found as: 𝐻(𝜔) = 𝐼2(𝜔)/𝑉3(𝜔). 

Finally, the impulse response of the transducer can be found as the inverse Fourier 

transform of H(ω): ℎ(𝑡) = ℱ−1{𝐻(𝜔)}. 

To increase the bandwidth of the transducer, we can add a quarter wave matching 

layer on the front. The matching layer can be modelled as its cascade matrix: 

(
𝑉2

𝐼2
) = (

𝑐𝑜𝑠𝜃 −𝑗𝑍0𝑠𝑖𝑛𝜃

𝑗
𝑠𝑖𝑛𝜃

𝑍0
−𝑐𝑜𝑠𝜃

) (
𝑉1

𝐼1
) 

Here θ is the angular thickness of the matching layer and Z0 is its acoustic 

impedance. Index 1 is towards the active element and index 2 is towards the 



 

 

acoustic front. This model can be used for several matching layers in cascade if 

required. We can also increase the bandwidth by using a heavy backing. 

The program transducer1.m use the above model and is listed below. First, the 

physical parameters of the active element must be entered including the size and 

material constants. Secondly, the parameters of the backing and load as well as the 

quarter wave matching layer, must be entered. The frequency variable is defined as 

a vector, f, and the input impedance and the frequency response of the transducer 

can be calculated. The time variable is also defined as a vector, t, and the impulse 

response of the transducer can be calculated 

%----------------------------------------------------------------- 

%   transducer 

%----------------------------------------------------------------- 

% This progam simulates a thin disc ultrasound transducer using the KLM 

% transmissionline model. 

% 

% The outputs from the program are: 

% 1.The electroacoustic transferfunction, Helac=I2/Vg, from generator 

% voltage, Vg, to acoustic front velocity, I2. 

% 2.The electric input impedance, Z3=V3/I3, at the electric port. 

% 3.The impulse response as acoustic front velocity, vfront, with a 

% Diracs-delta from voltage generator. 

% 

% The inputs are: 

% 

% Transducer disc dimensions: thickness, th, and diameter, diam. 

diam=12.7*10^-3; 

th=0.69*10^-3; 

ta=pi*(diam/2)^2;   % transducer area 

% 

% Transducer disc electro-acoustic parameters (PZ27) 

epsstrain=830;      % relative dielectric constant under constant strain 

eps0=8.85*10^-12;   % dielectric constant in vacuum 

eps=epsstrain*eps0; % dielectric constant in disc 

hdisc=22*10^8;      % piezoelectric coefficient 

cdisc=4350;         % wave velocity in disc 

Z0=34*10^6;         % characteristic impedance in disc 

Zdisc=Z0*ta;        % acoustic impedance in disc 

Rm=0.33*10^6*ta;    % mechanical loss equivalent in disc 

% 

% Calculate KLM model constants 

Cdisc=eps*ta/th;    % capacitance of disc 

Ndisc=hdisc*Cdisc;  % disc coupling factor 

% 



 

 

% Load and backing impedances 

Zwater=1.5*10^6; 

Zfront=ta*Zwater+Rm;   %load impedance including loss 

Zair=0.4*10^6;         %divinycell 

Zback=ta*Zair+Rm;      %backing impedance including loss 

% 

% Front matching layer 

Zmatch=4.25*10^6*ta;%acoustic impedance of matching layer 

cmatch=2800;        %velocity in matching layer 

tmatch=0.23*10^-3;  %thichness of matching layer 

% 

% Calculate electric input impedance, Zin=ZA+ZB(ZC+ZD)/(ZE+ZF) 

% 

j=complex(0,1);     % imaginary unit 

fdel=50000;        % frequency resolution 

fmin=300000;        % minimum frequency 

fmax=6000000;       % maximum frequency 

f=(fmin:fdel:fmax); % frequency vector from fmin to fmax in steps of fdel 

w=(2*pi)*f;         % angular frequency 

theta=(th/cdisc)*w; % angular thickness of disc 

thetamatch=(tmatch/cmatch)*w;   % angular thichness of matching layer 

Zfront=Zmatch*(Zfront+j*Zmatch*tan(thetamatch))./(Zmatch+j*Zfront*tan(thet

amatch)); 

ZA=(-j/Cdisc)./w; 

ZB=(hdisc^2/Zdisc)./w.^2; 

ZC=2*Zdisc.*(cos(theta)-1); 

ZD=j*(Zfront+Zback).*sin(theta); 

ZE=(Zfront+Zback).*cos(theta); 

ZF=j*(Zdisc-Zfront.*Zback/Zdisc).*sin(theta); 

Zin=ZA+ZB.*(ZC+ZD)./(ZE+ZF); 

Zphase=(180/pi).*angle(Zin); 

% 

% Plot input impedance 

figure; 

plot(f,abs(Zin),'k',f,Zphase,'k--','linewidth',2) 

%plot(f,real(Zin),f,imag(Zin)) 

hold on  

plot([1.e6 5.e6],[0 0],'k') % zero line 

set(gca,'fontsize',15) 

xlabel('Frequency [Hz]') 

title('Transducer Input Impedance') 

legend('module','phase') 

axis([1000000 5000000 -100 100]) 

% 

% Calculate transfer function Helac=I2/Vg from generator impedance to 



 

 

% front velocity, I2. 

% 

HA=-j*Zdisc./tan(theta); 

HB=-j*Zdisc./sin(theta); 

HC=-j*hdisc./w; 

HD=Zback-j*Zdisc./tan(theta); 

Htrans=(HB-HD)./(Zfront.*HD./Ndisc-HC.*Zfront+HA.*HD/Ndisc-HA.*HC-

HB.^2/Ndisc-HC.*HD+2.*HB.*HC); 

% 

% Transfer through front matching layer 

Hmatch=cos(thetamatch)-j*(Zfront/Zmatch).*sin(thetamatch); 

Htrans=Hmatch.*Htrans; 

% 

% Include generator impedans  

Zg=50; 

Helac=Htrans.*Zin./(Zg+Zin); 

Hphase=(180/pi).*angle(Helac); 

% 

% Plot amplitude response 

figure; 

plot(f,abs(Helac),'k','linewidth',2) 

set(gca,'fontsize',15) 

xlabel('Frequency [Hz]') 

title('Transducer Amplitude Response') 

%plot(f,Hphase) 

% 

% Find the impulse response of the transducer, vfront. 

% 

nft=1000; 

tdel=1/(fdel*nft); 

t=(0:tdel:tdel*(nft-1)); 

vfront=ifft(Helac,nft); 

Helacint=fft(vfront,nft); % prolongation of Helac to nft points 

% 

% Plot front velocity 

figure; 

plot(t,real(vfront),'k','linewidth',1.5) 

set(gca,'fontsize',15) 

axis([0.0 5*10^-6 -inf inf]) 

xlabel('Time [s]') 

title('Transducer Front Velocity') 

The impulse response of the transducer can be used as the front velocity of the 

transducer, provided that, the electric excitation at the electric port is an impulse 

function. 



 

 

A.2 Frontvel.m 
The pulse shown in Figure 3.6 is a realistic imaging pulse and well suited for an 

imaging system. An easier way of generating a front velocity pulse is to use the 

program frontvel.m. This program generates a pulse as a mathematical function of 

time. Any pulse may be defined, from very short pulses to semi continuous pulses. In 

the MATLAB code below, a Hanning weighted four period pulse with center 

frequency of 3MHz is generated. Also, in this case a time vector and a frequency 

vector must be defined. A center frequency must be chosen, and the function must 

be defined and calculated.  

% 

%------------------------------------------------------------------------- 

% FRONTVEL 

%------------------------------------------------------------------------- 

% Defines a front velocity vfront 

%------------------------------------------------------------------------- 

% 

tdel=20.0*10^-9;    % time resolution 

f0=3.0*10^6;         % center frequency 

T0=1/f0;             % center period 

iT0=round(T0/tdel); % integer of period 

% 

nft=1000;           % time array length 

fdel=1/(tdel*nft);  % frequency resolution 

t=(0:tdel:tdel*(nft-1));    % time axis 

f=(0:fdel:fdel*(nft-1));    % frequency axis 

  

% A three period Hanning pulse 

% 

vfront=zeros(1,nft);    % array for front velocity 

for i=0:3*iT0 

    vfront(i+1)=sin(2*pi*f0*tdel*i)*(1-cos(2./3.*pi*f0*tdel*i))/2; 

end 

  

% Plot front velocity 

figure; 

plot(t,vfront,'k','linewidth',1.5) 

set(gca,'fontsize',15) 

axis([0.0 5*10^-6 -inf inf]) 

xlabel('Time [s]') 

title('Source Front Velocity') 

% 

% Find frequency spectrum 



 

 

% 

Vfront=fft(vfront,nft); 

% 

% Plot amplitude spectrum 

figure; 

plot(f,abs(Vfront),'k','linewidth',2) 

set(gca,'fontsize',15) 

axis([0.0 10e6 -inf inf]) 

xlabel('Frequency [Hz]') 

title('Front Velocity Spectrum') 

A.3 Circular disc; disc1.m 
The program disc1.m defines the shape of a circular disc transducer, by defining the 

size of the elements and the number of elements depending on the radius of the 

disc. Each element is given an amplitude A, and a time delay tau. Both A and tau are 

two-dimensional arrays. The matrix, A, accounts for the shape as well as possible 

apodization of the source. The matrix, tau, accounts for the focusing of the source. 

The input to the program is simply the focal length and the program calculates the 

required time delay. The matrices A and tau are stored in the workspace. 

% 

%----------------------------------------------------------------------- 

% SOURCE circular single element disc 

%----------------------------------------------------------------------- 

% This program calculates the source amplitude function A(x0,y0) and  

% the source time delay tau(x0,y0) for a single element circular disc 

% transducer with focal length F and radius r0max. 

% 

%----------------------------------------------------------------------- 

% 

% Define a uniform circular disc with unit amplitude A of radius, r0max 

% and a timedelay giving a focus at F. 

% 

c=1500;     %speed in water 

F=0.075;     % Focal length of source, if F>0.9 then infinite focus 

diam=15*10^-3;   % diameter of source disc 

r0max=diam/2;   % radius of source disc 

% 

% Define source numerical grid 

delx0=0.1*10^-3; % element size of source in x-direction 

dely0=delx0; % element size of source in y-direction 

nr0=round(r0max/delx0); % number of radial source elements 



 

 

nx0=2*nr0; % number of source elements in x-direction 

ny0=2*nr0; % number of source elements in y-direction 

  

x0=(-delx0*(nx0-1)/2:delx0:delx0*(nx0-1)/2); % x0-vector at source 

y0=(-dely0*(ny0-1)/2:dely0:dely0*(ny0-1)/2); % y0-vector at source 

% 

% Calculate A(nx0,ny0) and tau(nx0,ny0) 

taumax=(sqrt(r0max^2+F^2)-F)/c; % maximum timedelay at center of disc 

A=zeros(nx0,ny0);   % Matrix for amplitude 

tau=zeros(nx0,ny0); % Matrix for time delay  

for i=1:nx0 

    for j=1:ny0 % element position, r0 

        r0=sqrt((delx0*(i-(nx0-1)/2))^2+(dely0*(j-(ny0-1)/2))^2); 

        if r0<r0max 

            A(i,j)=1;   % Uniform source amplitude 

            if F<0.9 

                tau(i,j)=taumax-(sqrt(r0^2+F^2)-F)/c; 

            else 

                tau(i,j)=0; % Infinite focus 

            end 

        else 

            A(i,j)=0;   % Outside disc 

            tau(i,j)=0; 

        end 

    end 

end 

figure; % Plot of source amplitude 

mesh(x0,y0,A) 

set(gca,'fontsize',15) 

title('Source Amplitude') 

xlabel('Size (m)') 

figure; %Plot of source time delay 

mesh(x0,y0,tau) 

set(gca,'fontsize',15) 

title('Source Time delay') 

xlabel('Size (m)') 

A.4 Rectangular disc rect1.m 
The program rect1.m defines the shape of a rectangular disc transducer, by defining 

the size of the elements and the number of elements depending on the length, Lx, 

and width, Ly, of the disc. Each element is given an amplitude A, and a time delay 

tau. Both A and tau are two-dimensional arrays. The matrix, A, accounts for the 



 

 

shape as well as possible apodization of the source. The matrix, tau, accounts for 

the focusing of the source. The inputs to the program are the focal length in azimuth, 

Fx, and elevation, Fy. The program calculates the required time delay. The matrices 

A and tau are stored in the workspace. 

% 

%----------------------------------------------------------------------- 

% RECT1 rectangular source function 

%----------------------------------------------------------------------- 

% This program calculates the source amplitude function A(x0,y0) and  

% the source time delay tau(x0,y0) for a rectangular Lx by Ly 

% transducer with focal length Fx in azimuth or x-direction and Fy in 

% elevation or y-direction. Apodization is given by Ax in the x-direction 

% and by Ay in the y-direction. 

% 

%----------------------------------------------------------------------- 

% 

% Define source numerical grid 

% 

delx0=0.1*10^-3; % element size of source in x-direction 

dely0=0.1*10^-3; % element size of source in y-direction 

Lx=0.02;   % Transducer length in x-direction (azimuth) 

Ly=0.012;   % Transducer width in y-dimension (elevation) 

nx0=round(Lx/delx0);   % Number of elements in x-direction 

ny0=round(Ly/dely0);   % Number of elements in y-dimension 

x0=(-delx0*(nx0-1)/2:delx0:delx0*(nx0-1)/2); % x0-vector at source 

y0=(-dely0*(ny0-1)/2:dely0:dely0*(ny0-1)/2); % y0-vector at source 

% 

% Define a uniform source function A(x0,y0) with unit amplitude 

% Define the time delay tau(x0,y0) Fx and Fy focal lengths. 

%  

c=1500;     % velocity in water 

Fx=0.075;     % Focal length of source in x-direction 

Fy=0.075;   % Focal length of source in y-direction 

  

A=zeros(nx0,ny0);   % array for amplitude 

Ax=zeros(nx0,1);    % array for apodization in x-direction 

Ay=zeros(ny0,1);    % array for apodization in y-direction 

tau=zeros(nx0,ny0); % array for total time delay 

taux=zeros(nx0,1);    % array for time delay in x-direction 

tauy=zeros(ny0,1);    % array for time delay in y-direction 

tauxmax=sqrt(Fx^2-(Lx/2)^2)/c;  % maximum time delay due to Fx 

for i=1:nx0  % loop for x-direction 

    taux(i)=sqrt(Fx^2-x0(i)^2)/c-tauxmax; % time delay in x-direction 

    %Ax(i)=sin(pi*(i-0.5)/nx0);  % Apodization in x-direction 



 

 

    Ax(i)=1.;                   % No apodization 

end 

  

tauymax=sqrt(Fy^2-(Ly/2)^2)/c;  % maximum time delay due to Fy 

for j=1:ny0  % loop for time delay in y-direction 

    tauy(j)=sqrt(Fy^2-y0(j)^2)/c-tauymax;   % time delay in y-direction 

    Ay(j)=1.;   % No apodization in y-direction 

end 

for i=1:nx0     % Setting time delay and apodization for all elements 

    for j=1:ny0 

        A(i,j)=Ax(i)*Ay(j); 

        tau(i,j)=taux(i)+tauy(j); 

    end 

end 

% 

figure; %Plot of source amplitude 

mesh(x0,y0,A.') 

set(gca,'fontsize',15) 

title('Source Amplitude') 

xlabel('x0 (m)') 

ylabel('y0 (m)') 

figure; %Plot of sorce timedelay 

mesh(x0,y0,tau.') 

set(gca,'fontsize',15) 

title('Source Time Delay') 

xlabel('x0 (m)') 

ylabel('y0 (m)') 

% 

A.5 Subroutine numwbin.m 
The subroutine numwbin.m is the central numeric algorithm. The routine is called 

from all the field calculation programs. The input to the routine comes from the 

MATLAB workspace. For the routine to work, the source must be defined and stored 

in workspace. The source shape is defined by running disc1.m for a circular disc or 

rect1.m for a rectangular transducer. The normal velocity of the source is defined by 

running transducer1.m or frontvel.m. The field programs define the observation 

points and call numwbin. for each observation point with spatial coordinates (x,y,z) 

and numwbin.m returns the pressure as function of time.  

%----------------------------------------------------------------------- 

% NUMNEW Numerical integration using weighted binning to find the SIR 

%----------------------------------------------------------------------- 



 

 

% This program calculates the spatial impulse response, velocity  

% potential  

% and pressure pulse of a piston disc transducer into infinite half- 

% space. 

% The source function, S(x0,y0,t), is defined by the source amplitude  

% function A(x0,y0), the source time delay,tau(x0,y0), and the normal  

% velocity of the source surface, v(t): 

% 

% S(x0,y0,t)=A(x0,y0)*v(t-tau(x0,y0)) 

% 

% where x0 and y0 are the coordinates of the source and t is time. 

% A(x0,y0), tau(x0,y0) and v(t) must be precalculated and stored in 

% workspace! 

%  

% The velocity potential, fi(x,y,z,t), where x, y, and z are the 

% coordinates of a predefined observation point in the infinite half- 

% space (z>0). 

% 

% fi(x,y,z,t)=sir(x,y,z,t)*v(t) 

% 

% The pressure field is calculated from the velocity potential as: 

% 

% p(x,y,z,t)=ro*d/dt[fi(x,y,z,t)] 

%----------------------------------------------------------------------- 

% 

% Define time resolution and time vector in order to calculate the spatial 

% impulse response, sir(t): 

%  

delt=0.02*10^-6;    % time resolution: 0.02 microseconds 

itmax=500;          % length of time array for calculation 

itmaxplot=250;      % length of time array for plotting 

tmin=-0.98*10^-6;   % minimum time for calculations 

tmax=9*10^-6;       % maximum time for calculations 

tmaxplot=4*10^-6;   % maximum time for plotting 

t=(tmin:delt:tmax); % timevector span from -1 to 9 microseconds, 1001  

% elements for calculations 

tfi=(tmin:delt:tmaxplot); % timevector span from -1 to 4 microseconds, 501 

% elements for plotting 

% 

% 

% Calculate sir by integrating over source coordinates 

% 

sir=zeros(1,itmax); 

delA=delx0*dely0/delt;  % Source element strength 

zz=z^2; 



 

 

for i=1:nx0 

    xx=(x-delx0*(i-(nx0+1)/2))^2; 

   for j=1:ny0 

       yy=(y-dely0*(j-(ny0+1)/2))^2; 

      R=sqrt(xx+yy+zz); % distance from source element to observation  

% point   

      T=(R-z)/c+tau(i,j);         % retarded time delay 

      tind=floor(T/delt)+50;      % time index, element 50 at T=0 

      Terr=T/delt-double(tind-50); % error in time due to integer index 

      % the i,j'th elements weighted contribution to SIR: 

      sir(tind)=sir(tind)+(1.-Terr)*delA*A(i,j)/(2*pi*R);   

      sir(tind+1)=sir(tind+1)+Terr*delA*A(i,j)/(2*pi*R); 

   end 

end 

% 

% Calculate velocity potential from sir and vfront 

% 

fi=ifft(fft(sir).*fft(vfront,500)); 

% 

% Calulate pressure from velocity potential, p(t)=ro*d/dt[fi(t)] 

ro=1000; 

pres=zeros(itmaxplot,1); 

for it=1:itmaxplot 

   pres(it)=ro*(fi(it+1)-fi(it))/delt; % derivation to find pressure 

   %pres(it)=sir(it); % returning sir to field 

end 

% 

% Return to field calculations with pressure pulse p(x,y,z,t)  

% for the given observation point (x,y,z). 

% 

% END 

 

A.6 Field0.m 
The program field0.m calculates the pressure field at a single observation point in 

space. The input to the program is the coordinates of the observation point in space, 

x, y, and z. The resulting pressure is plotted as a function of retarded time. Retarded 

time is defined as the time measured from T=z/c, where z is the depth of the 

observation point and c is the speed of sound. 

% 

%----------------------------------------------------------------------- 



 

 

% FIELD0 single point of observation 

%----------------------------------------------------------------------- 

% This program calculates the pressure field from a piston disc  

% transducer into infinite half-space for a single point of observation. 

% The subroutine disc1.m or rect1.m must on beforehand generate the  

% source amplitude function A(x0,y0) and the time delay tau(x0,y0).  

% The subroutine transducer1 or frontvel.m must have calculated the normal 

% velocity of the source surface v(t). 

% The subroutine numwbin.m is used to calculate the pressure pulse,  

% p(x,y,z,t) 

%----------------------------------------------------------------------- 

% 

% Define observation point (x,y,z) 

% 

x=0*10^-3; 

y=0*10^-3; 

z=75*10^-3; 

% 

% Call routine numint.m for calculating pressure pulse, p(x,y,z,t). 

% 

numwbin 

% 

% Plot pressure pulse 

% 

figure; 

plot(tfi,real(pres),'k','linewidth',1.5) 

set(gca,'fontsize',15) 

title('Pressure pulse') 

xlabel('Time (s)') 

legend('(x,y,z)=(0,0,75)mm') 

% 

% END 

 

A.7 Field1.m 
The program field1.m calculates the pressure field along the x-axis. The x-axis is 

perpendicular to the acoustic axis in the image plane. For a circular source, we have 

circular symmetry so that the x-axis and y-axis are interchangeable. For a 

rectangular source, however, the difference is important. 

The inputs to the program are the distance between the observation point and the 

number of observation points. The subroutine numwbin.m calculates the pressure 



 

 

field at each observation point. The pressure field is presented in two different plots. 

The first is a plot of the pressure field as function of time and distance from the 

acoustic axis. The second plot is referred to as the beam profile. From the calculated 

pressure pulse, we find the peak-peak pressure and pulse energy at each 

observation point and plot it as a function of the distance from the acoustic axis. The 

pressure field is symmetric around x=0 and the plot is therefore symmetric. For a 

circular source, the beam profile will in addition be circular symmetric. The width of 

the beam profile determines the resolution in an imaging system. 

%----------------------------------------------------------------------- 

% FIELD1 

%----------------------------------------------------------------------- 

% This program calculates the pressure field from a piston disc  

% transducer along a line perpendicular to the acoustic axis, beam  

% profile. The subroutine disc1.m must on beforehand generate the source  

% amplitude function A(x0,y0) and the source time delay tau(x0,y0).  

% The subroutine transducer1 must have calculated the normal velocity of 

% the source surface v(t).The subroutine numint is used to calculate the  

% pressure pulse, p(x,y,z,t) at each point along the axial distance in the 

% x-dimension. 

%----------------------------------------------------------------------- 

% 

% Define observation point (x,y,z) 

x=0*10^-3; 

y=0*10^-3; 

z=100*10^-3; 

% 

% Loop over the distances from the acoustic axis in the x-dimension. 

% 

nx=21;       % number of observation points along the x-dimension 

delx=0.5*10^-3;  % distance between observation points along x-axis.  

xvector=(0:delx:(nx-1)*delx); % position vector in x-dimension 

% 

itmaxplot=250; 

% 

% Initiate array for beam profile calculations 

% 

pres2D=zeros(nx,itmaxplot); % array for pressure pulse in 2 dimensions 

peakbeam=zeros(1,2*nx-1);  % array for peak pressure beam profile 

energybeam=zeros(1,2*nx-1);  % array for pulse energy beam profile 

% 

% Loop over the observation points in the x-direction 

% 

for n=1:nx 



 

 

        x=(n-1)*delx; 

        % 

        % Call numwbin.m to calculate pres(t) at observation point  

  % (x,y,z) 

        % 

        numwbin 

        % 

        % Store 2D pressure pulse for plotting 

        pres=real(pres); 

        pres2D(n,:)=pres; 

        % 

        % Sum up the energy of the pressure pulse 

        energy=0; 

        for it=1:itmaxplot 

            energy=energy+pres(it)^2*delt; % Summing up the energy of  

% pulse 

        end 

        energybeam(nx+n-1)=energy; 

        energybeam(nx-n+1)=energy; 

        % 

        % Find peak-to-peak pressure 

        presmin=min(pres); 

        presmax=max(pres); 

        peakbeam(nx+n-1)=presmax-presmin; 

        peakbeam(nx-n+1)=presmax-presmin; 

end 

% 

% Plot the beam profiles 

xbeam=(-delx*(nx-1):delx:delx*(nx-1));  % x-vector for beam profile 

peakbeam=peakbeam/max(peakbeam);        % normalizing peakbeam 

energybeam=energybeam/max(energybeam);  % normalizing energybeam 

figure; 

plot(xbeam,peakbeam,'k-',xbeam,energybeam,'k--','linewidth',1.5) 

set(gca,'fontsize',15) 

xlabel('Distance from axis [m]') 

title('Beam profile') 

legend('p-p pressure','pulse energy') 

% 

% Alternatively plot 2D pressure pulse 

figure; 

surfl(tfi,xvector,pres2D) 

set(gca,'fontsize',12) 

xlabel('Time [s]') 

ylabel('Distance to axis [m]') 

title('Pressure pulse') 



 

 

% 

% END 

A.8 Field2.m 
The program field2.m calculates the pressure field in two spatial dimensions, in the 

xz-plane. This is the image plane for an imaging system. For a circular source, the 

pressure field will have circular symmetry around the acoustic axis, the z-axis. The 

inputs to the program are the distances between the observation points in the two 

dimensions and the number of points in the two dimensions. The results are plotted 

in perspective as a beam in space or as a contour plot. The peak-peak pressure is 

normalized for depth in the contour plot. 

 

%------------------------------------------------------------------- 

% FIELD2 Two dimensional field calculation 

%------------------------------------------------------------------- 

% This program calculates the pressure field from a piston disc transducer 

% in a rectangular grid in image plane (x,z) where z is the acoustic axis. 

% The subroutine disc1.m or rect1.m must on beforehand generate the  

% source amplitude function A(x0,y0) and the source time delay  

% tau(x0,y0). The subroutine transducer1 or frontvel must have calulated  

% the normal velocity of the source surface vfront(t). The subroutine  

% numwbin is used to calculate the pressure pulse, p(x,y,z,t) at each  

% point in the xz-grid. 

%------------------------------------------------------------------- 

% 

% Calculate Beam profile at different depths (z-dimension) 

% 

mz=15;      % number of depths (z-values) 

delz=10*10^-3;      % distance between the calulation depths 

zvector=(2*delz:delz:(mz+1)*delz); %position vector in z-dimension 

% 

% Calculate Spatial impulse response as function of time and distance  

% from axis in the x-dimension. 

% 

nx=21;              % number of observation points along the x-dimension 

delx=0.5*10^-3;     % distance between observation points in the x-dim. 

xvector=(0:delx:(nx-1)*delx); % position vector in x-dimension 

% 

y=0.; % Beamprofile in horisontal plane (image plane) 

% 

% Initiate array for 2D-beam calculations 



 

 

% 

peakbeam=zeros(mz,2*nx-1); %array for peak pressure beam profile 

% 

% Lopp over the different depths in the z-direction 

for m=1:mz 

    z=(m+1)*delz; 

    % 

    % Loop over the observation points in the x-direction 

    for n=1:nx 

        x=(n-1)*delx; 

        % 

        % Call numwbin.m to calculate p(t) at observation point (x,y,z) 

        % 

        numwbin 

        % pressure is a real entity 

        pres=real(pres); 

        % 

        % Find peak-to-peak pressure 

        % 

        presmin=min(pres); 

        presmax=max(pres); 

        peakpres=presmax-presmin; 

        % 

        % Contruct beam profiles of p-p pressure and pulse energy 

        % 

        peakbeam(m,nx+n-1)=peakpres; 

        peakbeam(m,nx-n+1)=peakpres; 

    end 

end 

% 

% Plot 2D-beam 

% 

xbeam=(-delx*(nx-1):delx:delx*(nx-1)); % x-vector for beam profile 

% 

% Value of contour lines 

vplot=[1.0,0.708,0.501,0.355,0.251];   

% contours at 0dB, -3dB, -6dB, -9 and -12dB 

  

figure; % Contour plot 

contour(xbeam,zvector,peakbeam,10,'k-') 

set(gca,'fontsize',15) 

xlabel('Distance to axis [m]') 

ylabel('Distance to source [m]') 

title('Peak pressure beam') 

  



 

 

figure; % 3D-plot 

surfl(xbeam,zvector,peakbeam) 

set(gca,'fontsize',12) 

xlabel('Distance to axis [m]') 

ylabel('Dist. to source [m]') 

title('Peak pressure beam in space') 

% 

% Normalize beam profiles at each depth, z (m): 

% 

for m=1:mz 

peakbeam(m,:)=peakbeam(m,:)/max(peakbeam(m,:)); 

end 

% 

% Plot normalized beam 

% 

figure; 

contour(xbeam,zvector,peakbeam,vplot,'k-') 

set(gca,'fontsize',15) 

xlabel('Distance to axis [m]') 

ylabel('Distance to source [m]') 

title('Normalized pressure beam') 

legend('-3dB') 

% 

%END 

A.9 FieldL.m 
The program fieldL.m calculates the pressure field along the acoustic axis (z-axis) 

with the x- and y-coordinates set to zero. The inputs to the program are the number 

of observation points along the acoustic axis and the distance between them. The 

outcome of the program is a plot of the peak-peak pressure as function of the depth, 

z. 

%------------------------------------------------------------------- 

% FIELDL  

%------------------------------------------------------------------- 

% This program calculates the pressure field from a piston disc transducer 

% along the acoustic axis. The subroutine disc1.m or rect1.m must on   

% beforehand generate the source amplitude function A(x0,y0) and the  

% source time delay tau(x0,y0). The subroutine frontvel.m or transducer1.m 

% must have calulated the normal velocity of the source surface v(t). The 

% subroutine numwbin is used to calculate the pressure pulse, p(x,y,z,t)  

% at each point. 

%------------------------------------------------------------------- 



 

 

% 

% Define calculation grid along acoustic axis(z-dimension) 

% 

x=0.0;              % acoustic axis 

y=0.0; 

delz=2*10^-3;       % distance between the calculation depths 

znear=0.01;         % start depth 

mnear=uint16(znear/delz);   

zfar=0.15;          % stopp depth 

mfar=uint16(zfar/delz); 

mz=mfar-mnear+1;     % number of depths (z-values) 

  

zvector=(znear:delz:zfar); % position vector in z-dimension (depth) 

% 

% Initiate array 

% 

longplot=zeros(mz,1); % array for peak pressure along acoustic axis 

% 

% Lopp over the different depths in the z-direction 

for m=1:mz 

    z=double(m-1+mnear)*delz; 

    % 

    % Call numwbin.m to calculate pres(it) at observation point (x,y,z) 

    % 

    numwbin 

    pres=real(pres); % pressure is a real quantity 

    % 

    % Find peak-to-peak pressure 

    %    

    longplot(m)=max(pres)-min(pres); 

end 

% 

% Noralize longplot 

longplot=longplot/max(longplot); 

% 

% Plot peak pressure field along acoustic axis 

% 

figure; 

plot(zvector,longplot,'k','linewidth',2) 

set(gca,'fontsize',15) 

axis([0 0.15 0 1.2]) 

xlabel('Distance to source [m]') 

title('Peak pressure along acoustic axis') 

% 

%END 



 

 

A.10 FieldT.m 
The program fieldT.m calculates the peak-peak pressure field in a transversal plane 

normal to the acoustic axis. This calculation is intended for rectangular sources 

because circular sources are circular symmetric and a beam profile, as the one in 

Figure 3.13 will give sufficient information. The inputs to the program are the depth 

(z) of the transversal plane, the number of points in the x- and y-dimension and the 

distance between them.  

%------------------------------------------------------------------- 

% FIELDT Two dimensional field calculation transverse acoustic axis 

%------------------------------------------------------------------- 

% This program calculates the pressure field from a piston disc transducer 

% in a rectangular grid x-y transvers the acoustic axis. The subroutine  

% rect1 must on beforehand generate the source amplitude function A(x0,y0) 

% and the source time delay tau(x0,y0). The subroutine frontvel.m must  

% have calculated the normal surface velocity, v(t) of the source. 

% The subroutine numnew.m is used to calculate the pressure pulse, 

% p(x,y,z,t) at each point in the xy-grid. 

%------------------------------------------------------------------- 

% 

% Define distance from source, set z value 

z=100e-3; 

% 

% Define xy-grid. 

% 

nx=21;              % number of observation points along the x-dimension 

delx=0.5*10^-3;     % distance between observation points in the x-

dimension 

xvector=(0:delx:(nx-1)*delx); %position vector in x-dimension 

% 

ny=21;              % number of observation points along the y-dimension 

dely=0.5*10^-3;     % distance between observation points in the y-

dimension 

yvector=(0:dely:(ny-1)*dely); % position vector in y-dimension 

% 

% Initiate array for 2D-pressure calculations 

% 

peakbeam=zeros(2*ny-1,2*nx-1);  %array for peak pressure beam profile 

% 

% Lopp over the obsevation points in the y-direction 

for m=1:ny 

    y=(m-1)*dely; 

    % 



 

 

    % Loop over the observation points in the x-direction 

    for n=1:nx 

        x=(n-1)*delx; 

        % 

        % Call numwbin.m to calculate pres(it) at point (x,y,z) 

        % 

        numwbin 

        pres=real(pres); 

        % 

        % Find peak-to-peak pressure 

        % 

        presmin=min(pres); 

        presmax=max(pres); 

        peakpres=presmax-presmin; 

        % 

        % Contruct matrix of p-p pressure  

        % 

        peakbeam(ny+m-1,nx+n-1)=peakpres; 

        peakbeam(ny+m-1,nx-n+1)=peakpres; 

        peakbeam(ny-m+1,nx+n-1)=peakpres; 

        peakbeam(ny-m+1,nx-n+1)=peakpres; 

    end 

end 

% 

% Plot 2D-beam 

% 

xbeam=(-delx*(nx-1):delx:delx*(nx-1));  % x-vector for grid 

ybeam=(-dely*(ny-1):dely:dely*(ny-1));  % y-vector for grid 

% 

% Normalize peakbeam 

peakbeam=peakbeam./max(max(peakbeam)); 

vlog= 0:-3:-30;     % contours in dB 

vplot=10.^(vlog/20); % contours in linear scale 

figure; 

mesh(xbeam,ybeam,peakbeam) 

set(gca,'fontsize',15) 

title('Transvers beam profile') 

xlabel('Image plane [m]') 

% 

% Contour plot 

figure; 

contour(xbeam,ybeam,peakbeam,vplot,'k','linewidth',1.5) 

set(gca,'fontsize',15) 

title('Transvers beam profile') 

xlabel('Image plane [m]') 



 

 

legend('-3dB') 

% 

%END 
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