

Control Principles for Autonomous
Communication Networks

Azza H. Ahmed

PhD program in Engineering Science
Department of Computer Science

Faculty of Technology, Art and Design
OsloMet – Oslo Metropolitan University

Spring 2023

CC‐BY‐SA versjon 4

OsloMet Avhandling 2023 nr 23

ISSN 2535‐471X (trykt)
ISSN 2535‐5414 (online)
ISBN 978‐82‐8364‐490‐6 (trykt)
ISBN 978‐82‐8364‐506‐4 (online)

OsloMet – storbyuniversitetet
Universitetsbiblioteket
Skriftserien
St. Olavs plass 4,
0130 Oslo,
Telefon (47) 64 84 90 00

Postadresse:
Postboks 4, St. Olavs plass
0130 Oslo

Trykket hos Byråservice

Trykket på Scandia 2000 white, 80 gram på materiesider/200 gram på coveret

Preface
Advancements in artificial intelligence (AI) and network softwarization have enabled the

automation of complex networking problems that were previously difficult to solve. The

work presented in this thesis explores the use of AI techniques for solving various networking

problems, including network anomalies prediction, detection and attribution of

network outages and network optimization. I carried out this research under the supervision

of Dr. Ahmed Elmokashfi and Professor Michael A. Riegler at Simula Metropolitan

Center for Digital Engineering (SimulaMet).

This dissertation comprises five articles, which have been published or is under review

in leading networking and machine learning conferences and journals. Since the initial

submission of this thesis, Article II, Article III, Article IV have been published in conferences

and journals, while Article V is currently under review at IEEE Transactions on

Mobile Computing. The articles included in this thesis have been printed in their initial

versions. Links to the final published versions can be found at the following URLs:

Article I: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9663160

Article II: https://dl.acm.org/doi/pdf/10.1145/3534678.3539097

Article III: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9831432

Article IV: https://dl.acm.org/doi/pdf/10.1145/3547115.3547193

Article V: https://www.techrxiv.org/articles/preprint/Bottleneck_Identification_

in_Cloudified_Mobile_Networks_based_on_Distributed_Telemetry/22100546(Preprint)

I hope that this research will contribute to the ongoing efforts to leverage AI in solving

networking problems and that it will inspire further innovation in this field.

Azza H. Ahmed
April, 2023
Oslo Norway

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9663160
https://dl.acm.org/doi/pdf/10.1145/3534678.3539097
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9831432
https://dl.acm.org/doi/pdf/10.1145/3547115.3547193
https://www.techrxiv.org/articles/preprint/Bottleneck_Identification_%20%20in_Cloudified_Mobile_Networks_based_on_Distributed_Telemetry/22100546
https://www.techrxiv.org/articles/preprint/Bottleneck_Identification_%20%20in_Cloudified_Mobile_Networks_based_on_Distributed_Telemetry/22100546

To the soul of my sincere friend, my father who could not see this thesis completed.

Abstract

The growing complexity of communication networks and the explosion of network traffic

have made the task of managing these networks exceedingly hard. A potential approach

for striking this increasing complexity is to build an autonomous self-driving network that

can measure, analyze and control itself in real time and in an automated fashion with-

out direct human intervention. In this thesis, we focus on realizing such an autonomous

network leveraging state-of-the-art networking technologies along with artificial intelli-

gence and machine learning techniques. Toward this goal, we exploit different learning

paradigms to automate network management. First, we propose supervised machine

learning methods to detect increases in delays in mobile broadband networks. Further,

considering the challenges of supervised learning in networking applications, we present a

novel real-time distributed architecture for detecting anomalies in mobile network data in

an unsupervised fashion. It also involves a collaborative framework for knowledge sharing

between the distributed probes in the network to improve the overall system accuracy.

Second, we propose a novel deep reinforcement learning based control framework for op-

timizing resources utilization while minimizing performance degradation in multi-slice

Radio Access Network (RAN) through a set of diverse control actions. We explore both

centralized and distributed control architectures. Last, we design a framework for timely

collecting telemetry, detecting and attributing outages in mobile networks. We evaluate

our framework on a software defined virtualised testbed that resembles a cloudified mobile

network.

i

Sammendrag

Sammendrag Den økende kompleksiteten til kommunikasjonsnettverk og eksplosjonen av

nettverkstrafikk har gjort oppgaven med å administrere slike nettverk stadig vanskeligere.

En potensiell tilnærming for å møte denne økende kompleksiteten er å bygge et autonomt

selvkjørende nettverk som kan m̊ale, analysere og kontrollere seg selv i sanntid p̊a en au-

tomatisert måte uten direkte menneskelig innblanding. I denne avhandlingen fokuserer vi

p̊a å realisere slike autonome nettverk som utnytter moderne nettverksteknologier sammen

med kunstig intelligens og ulike teknikker for maskinlæring. For å realisere dette utnyt-

ter vi forskjellige maskinlæringsparadigmer til å automatisere nettverksadministrasjon.

Først foresl̊ar vi metoder med veiledet maskinlæring for å oppdage økninger i forsinkelser

i mobile bredb̊andsnettverk. Videre, med tanke p̊a utfordringene med veiledet læring i

nettverksapplikasjoner, presenterer vi en ny distribuert sanntidsarkitektur for å oppdage

uregelmessigheter i data fra mobilnettverk uten å bruke veiledet maskinlæring. Det in-

nebærer ogs̊a et samarbeidsrammeverk for kunnskapsdeling mellom distribuerte prober

i nettverket for å forbedre den generelle systemets nøyaktighet. For det andre foresl̊ar

vi et nytt, dypt forsterkende læringsbasert kontrollrammeverk for å optimalisere ressur-

sutnyttelsen og samtidig minimere ytelsesdegradering i multi-slice Radio Access Network

(RAN) gjennom et sett med forskjellige kontrollhandlinger. Vi utforsker b̊ade sentraliserte

og distribuerte kontrollarkitekturer. Til slutt presenterer vi et rammeverk for sanntids

innsamling av telemetri som kan oppdage og identifisere utfall i mobilnettverk. Vi eval-

uerer rammeverket v̊art i en programvaredefinert virtualisert infrastruktur som tilsvarer

et skybasert mobilnettverk.

ii

Acknowledgements

This PhD journey has allowed me to meet exciting people who have greatly helped and

supported me. These people have allowed me to grow, learn, and progress both scientif-

ically and personally. I would like to acknowledge those who have contributed the most

throughout this journey.

First, I would like to thank my main supervisor Ahmed Elmokashfi for his support

and his immense scientific knowledge. He has been guiding me throughout this journey

with his inspiring advices and constructive criticism. I really appreciate his patience,

availability and trust. Without his precious contributions it would not be possible to

complete this work. I also would like to thank Michael Riegler for being my co-supervisor

and giving me a thorough introduction to the research area of artificial intelligence.

I am also very grateful to all my colleagues at SimulaMet, specially to MahRukh

Fida, Andres Ocampo, Steven Hicks, Anas Al-Selwi, Ioana Livadariu, Foivos Michelinakis,

Thomas Dreibholz, Jan Marius Evang, and Haakon Bryhni for their valuable knowledge,

strong encouragement, and for all the fun we have had together in the last three years.

Finally, I express my gratitude to my family and friends for all of the love and support

along this journey. To my parents, thank you for being my champions throughout the

past 33 years. To my brother, thank you for believing in me. To my children; Noor,

Mohamed and Yousif, you are my inspiration to achieve greatness. To my friends; Lina,

Sara, Samah, Mohamed and Rasha, you have made me stronger, better and more fulfilled

than I could have ever imagined. Last but not least, special thanks to my husband Sami

Satti, for his love, his patience, and his choice to share with me the happy and the difficult

moments of the PhD journey.

iii

List of Articles

Article I

Article II

Ahmed, A. H., Hicks, S., Riegler, M. A., and Elmokashfi, A. (2021). Predicting

High Delays in Mobile Broadband Networks. IEEE Access, 9, 168999-169013.

DOI: https://doi.org/10.1109/ACCESS.2021.3138695.

Ahmed, A. H., Hicks, S., Riegler, M. A., and Elmokashfi, A. (2022, August 14 - 18,)

RCAD:Real-time Collaborative Anomaly Detection System for Mobile

Broadband Net-works. KDD '22: The 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining. DOI: https://doi.org/10.1145/3534678.3539097

Article III Ahmed, A. H., and Elmokashfi, A. ICRAN: Intelligent Control for Self-driving

RAN based on Deep Reinforcement Learning, in IEEE Transactions on Network

and Service Management, vol. 19, no. 3, pp. 2751-2766, Sept. 2022.

Article IV Evang, J. M., Ahmed, A. H., Elmokashfi, A. and Bryhni, H. (2022, 26. July)

Crosslayer Network

Article V

 Outage Classification Using Machine Learning.

Applied Networking Research Workshop 2022 (ANRW’22).

DOI: https://doi.org/10.1145/3547115.3547193

Fida*, M., Ahmed*, A. H., Dreibholz, T., Ocampo, A. F., Michelinakis, F. I

and Elmokashfi, A. Bottleneck identification in cloudified mobile

networks based on distributed telemetry. Submitted to Conference on

emerging Net-working EXperiments and Technologies (CoNEXT 2022).URL:

https://www.techrxiv.org/articles/preprint/

Bottleneck_Identification_in_Cloudified_Mobile_Networks_based_on_Distributed_

Telemetry/22100546

* Both authors contributed equally.

iv

DOI: https://doi.org/10.1109/TNSM.2022.3191746.

https://doi.org/10.1109/ACCESS.2021.3138695
https://doi.org/10.1145/3534678.3539097
https://doi.org/10.1109/TNSM.2022.3191746
https://doi.org/10.1145/3547115.3547193
https://www.techrxiv.org/articles/preprint/Bottleneck_Identification_in_Cloudified_Mobile_Networks_based_on_Distributed_Telemetry/22100546

Part I: Research Overview

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Scope and Research Questions . 3

1.3 Research Methodology . 5

1.4 Thesis Outline . 6

2 Background 9

2.1 Self-driving Networks . 9

2.1.1 Main Components . 10

2.1.2 Enabling Technologies to Realize Self-driving Networks 14

2.2 Machine Learning for Network Management and Control 16

2.2.1 Supervised Learning . 17

2.2.2 Unsupervised Learning . 20

2.2.3 Reinforcement Learning . 23

3 Related Work and Research Contributions 29

3.1 Anomaly Detection in Communication Networks 29

3.1.1 Time series Anomaly Detection Methods 29

3.1.2 Anomaly Detection Methods for Mobile Network Performance . . . 31

3.2 Deep Reinforcement Learning in Mobile Network Management and Control 34

3.3 AI-based Data Analytic in Telemetry . 37

4 Conclusion and Future Work 39

4.1 Conclusion . 39

4.2 Future Work . 40

vi

Contents

Bibliography 42

vii

List of Figures

1.1 Thesis Scope. 5

2.1 Self-Driving Networks High-Level Architecture. 10

2.2 An illustration of Linear Support Vector machine (SVM). 17

2.3 An illustration of Decision Trees (DT). 18

2.4 An illustration of Random Forest (RF) [55]. 19

2.5 Architecture of typical Artificial Neural Network (ANN). 20

2.6 An illustration of k-means clustering method (k=2). 21

2.7 An illustration of Isolation Forest (iForest) [98]. 21

2.8 Architecture of Autoencoder (AE). 22

2.9 High-level architecture of the HTM system. 23

2.10 An illustration of Reinforcement Learning (RL). 24

viii

Chapter 1

Introduction

1.1 Motivation

The basic functioning of our society has become increasingly reliant on communication

infrastructures ranging from the Internet to mobile networks. Next-generation mobile

networks has transformed the mobile network into a multi-service architecture that sup-

ports diverse use cases with varying requirements [33]. Today, public safety, healthcare,

and businesses require reliable and robust communication networks. Moreover, the rise

of the Internet of Things (IoT) and the need to tackle pressing societal challenges such as

population aging and global warming, mean that our reliance on communication infras-

tructures is only going to rise. According to the International Telecommunication Union

(ITU), the overall mobile data traffic is estimated to grow at an annual rate of around 55%

in 2020–2030 to reach 607 exabytes (EB) per month in 2025 and 5, 016 EB in 2030 [1].

Overall, this rapid increase and change in the number of connected devices, applications

and data volume in networks are putting a significant pressure on the current network

management approaches that heavily rely on human operators. Furthermore, several en-

visioned use cases like public safety communication and industrial control have stringent

performance expectations [49]. Because of this growing need for diverse applications, each

with its own quality of service (QoS) requirements, today’s operators must maintain a

balance between the the provided services and the reduction of configuration problems.

In addition, this diversity increases security, availability, and performance requirements

of these applications which makes network management a difficult task in real time across

a complex web of interacting protocols and systems [30]. Several studies show that a

1

1.1. Motivation

considerable fraction of network failures is related to human errors while performing net-

work management tasks. For example, Liu et al. [72] investigated the network incidents

in Alibaba wide area network (WAN), that took place in the years 2016 and 2017, and

found that 56% of them were due to misconfigurations. A similar study from Google,

which analyzed failures in Google’s infrastructure, concluded that most of the failures oc-

curred during the network management process [38]. Recently, in October 2021, Facebook

experienced an outage that lasted for six hours which left over 3.5 billion users with no

access to its social media platforms (Facebook, Instagram and WhatsApp). According to

Facebook’s official incident report [25], the outage was caused by a maintenance routine

job which unintentionally took down all the connections in Facebook’s backbone network,

effectively disconnecting Facebook data centers globally. Moreover, in December 2021, a

major outage hit Amazon Web Services (AWS) in Northern Virginia (US-EAST-1) region

affecting most of Amazon services such as Alexa, Ring, and Disney Plus. Amazon ex-

plained that the failure was due to an automated activity to scale capacity of one of the

AWS services hosted in the main AWS network which triggered an unexpected behavior

from a large number of clients inside the internal network. Due to the high volume of

connections as a result, the internal network and the main AWS network’s networking

hardware became overloaded, which delayed communication between both networks [8].

The requirement to meet the needs of both users and operators in a cost-effective

way has motivated the academia and industry to argue for building “autonomous” or

“self-driving” networks. A self-driving network is defined as a network capable of mea-

suring, analyzing and controlling itself where network management and control decisions

are made in real time and in an automated fashion with little or no human involvement.

The campaign for more autonomous networks has been accompanied by the recent tech-

nological advances mainly: 1) the development of fully programmable data planes and

the languages to program them; and 2) the breakthroughs in Artificial Intelligence (AI)

and Machine Learning (ML) algorithms [30].

In response to this interest within academia and industry in leveraging the latest tech-

nologies to advance the development of autonomous networks, in this work we exploit

the advantages of ML in solving complex performance issues in networks, especially with

the advancement of the future network such as software-defined networks, network vir-

tualization and network slicing. Further, existing approaching for closed-loop control in

2

1.2. Thesis Scope and Research Questions

communication networks are mostly centralized and threshold-based and are thus rigid.

Hence, in this work we tackle the challenge of the distributed nature of communication

networks and the need of executing decision making processes over very short time scales

to realize the self-driving automated future networks. We present an automated net-

work management system that can efficiently predict and detect anomalies in real time.

Furthermore, we propose a novel intelligent control method that can timely detect and

correct performance problems. Specifically, we focus on maximizing network radio re-

sources utilization and minimizing performance degradation by leveraging the advances

in deep reinforcement learning. We argue that building self-driving networks is feasible

if we undertake transformation from passive response to proactive prediction and from

open-loop to closed-loop control. The integration of AI and networking technologies such

as programmablility and virtualization makes this goal seemly achievable.

1.2 Thesis Scope and Research Questions

Figure 1.1 presents the scope of this PhD thesis. The core contributions of the thesis

are related to three domains representing the main components of self-driving networks:

telemetry, data analytic and network control and management. The main research ques-

tion of this study is:

Can AI-based methods help in realizing self-driving networks?

To answer this research question, we analyze the related state-of-the-art and formulate

the following detailed three research questions (RQs). For each RQ, we refer to our main

contributions by pointing to the respective paper (or collection of papers) that addresses

the research problem.

RQ 1: How to build an automated network management system that can

efficiently predict and detect anomalies in network traffic?

The need for automated management system is highly driven by the rapid increase in

data traffic and the number of connected devices and applications in networks which are

putting a significant pressure on the current network management approaches that heavily

rely on human operators. One of the main challenges to network management systems is

“anomalies” which represent unusual traffic patterns in the network. To help identify these

3

1.2. Thesis Scope and Research Questions

anomalies, we leverage different AI/ML methods. Article I proposes a supervised learning

ensemble classification model that predicts high delays in mobile broadband networks. In

this study, we consider 4G and 5G measurements from the two largest mobile operators

in Norway. The probes measure round trip times (RTTs) alongside connection metadeta.

In a different context other than the mobile networks, we conduct another study based

on supervised learning in Article IV to identify and classify crosslayer outages in a

global Internet Service Provider (ISP) network using Layer1, Layer2 and Layer3 data.

Further, to tackle the supervised learning challenges we leverage unsupervised learning

for detecting anomalies in networks. In particular, in Article II we propose a novel

unsupervised framework for detecting anomalies in network data forwarding latency in

an distributed way. In this work, we use Hierarchical Temporal Memory (HTM) model

to detect anomalies in real time in a commercial mobile network. We also develop a novel

collaborative distributed learning module that facilitates knowledge sharing across the

system to improve the overall system performance.

RQ 2: How to design an intelligent control framework for future networks

that maximizes the network resources and assure users’ satisfaction? Is it

possible to increase control decisions’ efficiency by incorporating learning

into network management and control? What are the trade-offs between

centralized and decentralized control architectures in network management?

Mobile networks are increasingly expected to accommodate a wide range of use cases

with varying performance requirements while maintaining a high level of reliability. These

expectations necessitate methods for detecting and correcting performance issues in a

timely manner. Current approaches, on the other hand, frequently focus on optimizing a

single performance metric. To address this gap, we present, in Article III, a novel dual-

objective control framework that maximizes radio resources utilization while minimizes

performance degradation in radio access network (RAN) which represents the most chal-

lenging part of cellular architecture. We leverage two deep reinforcement learning based

approaches that control the RAN in a centralized and a distributed way, respectively,

through a set of diverse control actions. To evaluate our proposed methods, we use the

well-known network simulator ns-3 [2].

4

1.3. Research Methodology

– Anomaly Detection
– Network Performance
prediction

Data Analytic

– In-band Telemetry

Telemetry

– Automation
– Optimization
– Reliable management

Control and Management

Thesis
Scope

Figure 1.1: Thesis Scope.

RQ 3: How to design and implement a troubleshooting system that can

detect performance degradation problems in mobile network leveraging the

advances in AI/ML based on the network telemetry? What are the min-

imal measurements should be collected to identify the root cause of such

problems?

Next-generation mobile networks are expected to support different services with dif-

ferent requirements across heterogeneous network components and virtualized infrastruc-

tures. To meet the predefined service level agreement (SLA), for an optimal user expe-

rience, it is vital for the operators to constantly monitor various points in the network.

It is required to identify faults in the network and resolve the issues in a timely manner,

so as to minimize service downtime. In addition to infrastructure performance, it is es-

sential to monitor applications from an end user perspective. Therefore, in Article V

we implement a distributed telemetry system on a real testbed in which end users act as

early warning sensors. Upon flagging a performance degradation problem, the network

controller activates its machine learning model to attribute the cause of the problem with

minimal system overhead.

1.3 Research Methodology

In this work, we follow the below four different research methods in order to answer the

aforementioned research questions:

5

1.4. Thesis Outline

• Measurements and empirical data being used in this work are collected from two

different sources: 1) NorNet Edge (NNE) platform [60]; a large number of probes

setup for measuring commercial mobile broadband networks in Norway, and 2)

extensive measurements in a dedicated experimental setup, i.e., testbeds.

• Statistical methods to provide data analysis and preliminary insights into the prob-

lem under investigation. We leverage both descriptive statistics such as mean and

standard deviation, and inferential statistics such as hypothesis testing and regres-

sion analysis.

• Machine learning and biologically-inspired machine intelligence algorithms are lever-

aged and optimized to capture the intrinsic characteristics of the network data. Dif-

ferent learning algorithms are used in this work: supervised [19], unsupervised [123],

deep learning [62], deep reinforcement learning [68] and HTM [44].

• Network simulation offers an efficient cost-effective way to assess how the network

will behave under different conditions. We use the ns-3 simulator [2]; which is an

open source discrete-event network simulator; to create a training environment for

deep reinforcement learning (DRL) agents. More specifically, we use ns-3 Gym [36]

which is an interface between OpenAI Gym and ns-3 that allows for integration

of those two frameworks. The interface takes care of the management of the ns-

3 simulation process life cycle as well as delivering state and action information

between the DRL agent and the simulation environment. We choose simulation for

training because DRL agents need a huge number of iterations to properly learn.

Also, the simulation allows DRL agents to explore different actions without affecting

the functionalities of network hardware components. However, we believe that an

agent trained by simulation data needs further adaptation before transfer to the

real environment.

1.4 Thesis Outline

This thesis is organized into two main parts. Part I outlines the research and identifies

the contributions of the thesis. It is divided into four chapters: Chapter1- Introduction

(this chapter) presents the motivation for this work, research questions addressed in this

6

1.4. Thesis Outline

thesis and the research methods, Chapter 2-Background gives background information

on automated network management and control alongside machine learning algorithms

applied in this work, Chapter 3- Related Work and Research Contributions summarizes

the related work and identifies the thesis contributions, and finally Chapter4- Conclusion

and Future Work concludes the thesis and discusses potential future work directions. Part

II contains each of the five papers published during the thesis in their original shapes.

Below is the list of these publications:

Paper I Predicting High Delays in Mobile Broadband Networks.

published in IEEE Access, Volume 9, pages 168999-169013, 2021.

authors Azza H. Ahmed, Steven Hicks, Michael A. Riegler, and Ahmed

Elmokashfi.

Paper II RCAD:Real-time Collaborative Anomaly Detection System for Mo-

bile Broadband Networks.

accepted at ACM SIGKDD Conference on Knowledge Discovery and Data Min-

ing, 2022.

authors Azza H. Ahmed, Michael A. Riegler, Steven Hicks and Ahmed

Elmokashfi.

Paper III ICRAN: Intelligent Control for Self-driving RAN based on Deep

Reinforcement Learning.

submitted to IEEE Transactions on Network and Service Management Journal,

2022.

authors Azza H. Ahmed and Ahmed Elmokashfi.

Paper IV Crosslayer Network Outage Classification Using Machine Learning.

accepted at ACM/IRTF Applied Networking Research Workshop (ANRW’22),

2022.

authors Jan Marius Evang, Azza H. Ahmed, Ahmed Elmokashfi and Haakon

Bryhni.

Paper V Bottleneck identification in cloudified mobile networks based on

distributed telemetry.

submitted to Conference on emerging Networking EXperiments and Technologies

(CoNEXT 2022).

7

1.4. Thesis Outline

authors MahRukh Fida*, Azza H. Ahmed*, Thomas Dreibholz, Andres F.

Ocampo, Foivos A. Michelinakis and Ahmed Elmokashfi.

* Both authors contributed equally.

8

Chapter 2

Background

In this chapter, we introduce some background information for a better understanding

of this PhD thesis. In Section 2.1, we focus on the new network management paradigm,

namely self-driving networks. In Section 2.2, we present the machine learning advances

in the context of network management.

2.1 Self-driving Networks

The network management automation is vital to meet the increasing complexity in today’s

communication infrastructures. For example, 5G has transformed the mobile network into

a multi-service architecture that supports diverse use cases with varying requirements [33].

5G virtualizes network resources and chains them into end-to-end network slices that are

adapted to use cases’ requirements. This flexibility makes mobile networks increasingly

complex to manage [83]. Hence, multi-slice 5G and beyond networks must be capable

of quickly detecting and correcting performance degradation. Current mobile networks

resort to pre-configured priorities, over-provisioning and at best implementing traditional

closed loop control systems with a limited scope like in the case of self-organizing networks

(SON) [113]. While most of the research in autonomous networks has been focused on

mobile networks, recently there has been an increased interest in network management

automation for other networks such as wide area network (WAN) which represents one

of the most significant networks in the Internet. Consequently, Software-defined WAN

(SD-WAN) is presented as promising architecture of next-generation WAN to address

the challenges of the increasing number of devices connected to the Internet and traffic

9

2.1. Self-driving Networks

Intent

ControlTelemetry

Data
Analytics

Network Goals

Acti
on

s

Measurements

logs

Control
Loop

Figure 2.1: Self-Driving Networks High-Level Architecture.

demands [133]. Compared with traditional WAN, SD-WAN provides a programmable

infrastructure to develop centralized control to define network policies, monitor network

traffic, configure network devices and assure users’ quality of experience without human

intervention [82].

The need for intelligent automation has motivated the academia and industry to argue

for building “autonomous” or “self-driving” networks, where network management and

control decisions are made in real time and in an automated fashion. A self-driving

network is defined as a network capable of measuring, analyzing and controlling itself

in an automated manner [54]. Figure 2.1 shows the high-level architecture proposed

by both the academia and the industry for self-driving networks. In this architecture,

the self-driving network can take as input high-level goals related to performance or

security (such as minimizing network congestion) through the Intent-based system and

jointly determine (1) the measurements that the network should collect, (2) learning and

inferences that the network should perform, and (3) the actions that the network should

ultimately execute [30]. Below, we will deep dive into those components individually and

identify the enabling technologies to realizing self-driving networks.

2.1.1 Main Components

(a) Telemetry: One of the ultimate goals of the self-driving networks is reducing

the operational and maintenance costs result from the growing complexity of the

10

2.1. Self-driving Networks

networks. The network management system should scale to a large amount of

traffic generated by the huge number of networked devices. This implies revis-

iting network telemetry. Flow monitoring tools like NetFlow [3], Flowradar [67]

and sFlow [128] provide good performance for coarse-grained tasks, but with high

memory and bandwidth consumption. Operators collect massive amount of data

from these tools and infer network-wide state from the collected data. Aligned with

the vision of the self-driving networks, the network telemetry system should mon-

itor network flows, analyze the measurements and provide the needed information

about network state to the network management system to make the right man-

agement decisions in a real-time and fine-grained fashion [134]. Moreover, through

the network telemetry system the operators should be able to specify high-level

queries about the network-wide state without worrying how the measurements are

conducted. Finally, telemetry should provide better scalability, accuracy, coverage,

and performance than traditional network measurement technologies [132]. With

the rise of software defined networking (SDN) and programmable data plane, dif-

ferent telemetry approaches are being proposed. For example, NetSight [43] which

applies packet monitoring to support applications that require extracting the full

journey of selected packets. Based on the packet history, each application can an-

alyze the collected data of interest and answer the network-wide queries. Another

work that rely on packet-level telemetry is Everflow [137] which is used in large data

centres. Everflow traces specific packets by applying match+action functionality to

filter packets. Both NetSight and Everflow need large bandwidth and processing

overheads when the network is at a large scale. Recently, a new telemetry concept

has been introduced, In-band Network Telemetry (INT) [57] which relies on pro-

grammable switches to execute queries. It encapsulate packet-level network state

(e.g., link utilization, queue occupancy, hop-by-hop delays) into “production traf-

fic” packets. INT allows collecting and reporting network states in the data plane,

without intervention from the control plane. Several recent works have explored

the idea of INT. The P4-based INT [23] is the earliest INT implementation using

programmable switches. Pan et al. [90] proposed INT-path; a framework comprises

of INT and active telemetry. INT-path couples the INT probe with the source rout-

ing label stack to accommodate the user-specified monitoring path. Snappy [22]

11

2.1. Self-driving Networks

also utilizes the data-plane memory to maintain multiple snapshots of the queue

occupancy to identify the flows responsible for a microburst in real time. Although

INT emerges as a promising telemetry approach to provide fine-grained data, it can

result in performance degradation due to encapsulation of telemetry instruction and

metadata data. The control unit should optimize between the INT overhead and

the achievements of the wide-network goals.

(b) Data Analytic: The telemetry system collects large monitoring and measure-

ment datasets that must be aggregated, filtered, and analyzed. AI and ML offer

techniques for extracting knowledge from data [9]. They can play a vital role in

facilitating closed loop orchestration and management to realize automated net-

works. Self-driving network leverages AI/ML techniques to extract knowledge and

inference from operational data gathered in the telemetry system. Examples of

inference include forecasting traffic volume changes [126], estimating user mobility

patterns [45], predicting future network events such as throughput drop [97], and

early detection of anomalous behavior [64]. These inferences will be leveraged by

the control function to take more reliable control and management decisions [17].

(c) Control and Decision Making: Self-driving networks are only feasible with ac-

curate and timely feedback from the network elements. Existing network monitoring

solutions increase network overhead dramatically and can only provide delayed ex-

perience of the packet, leading to deferred network control decisions. But, prompt

responses to network conditions are very critical for self-driving networks. The role

of the control component is to monitor the network configurations and status from

the network and based on some triggers from the analytics unit can take actions to

modify the current configurations on the network.

(d) Control Loop: In early 2000s, IBM proposed an architecture for autonomic com-

puting [48] by defining MAPE (Monitor, Analyse, Plan, and Execute) control loop

over the managed environment. Since then, other works have proposed new solutions

based on the MAPE loop. For example, ETSI [27] introduced the Experiential Net-

worked Intelligence through the concept of closed control loops containing monitor-

ing, analysis, policy, execution plus knowledge steps, MAPE-K, with applications in

infrastructure management, network operations, and service orchestration and man-

12

2.1. Self-driving Networks

agement. Also, SON leverages closed control loop as a key enabler for management

automation to deliver the self-x properties such as self-healing, self-configuration,

and self-optimization [113].

Aligned with these proposals, self-driving networks are proposed as a closed-loop

system which enables and adapts network polices (goals) to continuously manage

the virtual network in an automated manner. When the network experiences a

change, information gathered in the telemetry system is packaged as an event. This

event is analysed by the analytics unit to assess its significance. Significant events

trigger the control component to perform corrective actions, i.e. reconfiguration on

the network. In open control loops, at least one of the stages in the loop is manually

performed. In contrast, with closed control loops, the operator only defines a goal

and once it is configured, the loop runs automatically. In both open and closed

control loop the operator may perform some configurations as part of supervision

of the loops. Both control loops attempt in controlling the status of the network by

trying to keep it as close as possible to an operator specified desired goal.

(e) Intent-based Networking: Deploying policies in modern enterprise networks

poses significant challenges for today’s network operators. Since policies typically

describe high-level goals or business intents, the operators must perform the complex

and error-prone job of breaking each policy down into low-level tasks and deploy-

ing them in the physical or virtual devices of interest across the entire network.

Recently, intent-based networking (IBN) has been proposed to solve this problem

by allowing operators to specify high-level policies that express how the network

should behave (e.g., defining goals for quality of service, security, and performance)

without having to worry about how the network is programmed to achieve the

desired goals and without the knowledge of the low-level configurations in the net-

work [11]. The operators can use high level languages to express their intents that

dictate how the network should behave to achieve the specified goals. This area

has attracted many researches in academia and industry through the last few years

to create new intent-based policy frameworks. There have been various efforts to

present several intent languages and compilers to deploy the translated intents in

the network [11, 12, 116]. With the the recent advances in machine learning, vari-

ous works proposed the usage of the natural languages thus eliminating the need for

13

2.1. Self-driving Networks

learning new languages [51, 50, 6]. For example, Jacobs et al. [51] presented a novel

intent-refinement architecture that uses deep learning and feedback from the opera-

tor to translate the network high-level objectives expressed in natural language into

network commands. The operator has the ability to do some changes for the trans-

lated intent program until it is finalized. This work incorporates the feedback from

the operator which results in improving the performance for the intent management

system while avoiding mis-configurations.

2.1.2 Enabling Technologies to Realize Self-driving Networks

In this section we highlight the key advances that provide great opportunities to realize

the concept of self-driving network, in particular, the networking technologies: software-

defined networking (SDN), network function virtualization (NFV) and network slicing

(NS).

(a) Software-Defined Networking (SDN): SDN is a paradigm that separates the

data plane and the control plane. Conventionally, network devices such as switches

and routers have control plane, management plane and data plane whereas in SDN

the control plane logic is implemented as a centralized software component that

controls the entire network. Forwarding devices could be programmed using an

open interface, such as OpenFlow [79] to enable the control plane to control for-

warding devices from different hardware and software vendors. Although most of

the research in SDN has focused on the control plane programmability, lately, SDN

has also introduced opportunities for data plane flexibility and programmability.

[13, 53] survey the current advances in programmable software and hardware net-

work devices. They highlighted the architecture of software switches such as Open

vSwitch (OVS) [93] and PISCES [109] and the mechanisms to program them like

Programming protocol-independent packet processors (P4) [16]. P4 is currently the

most widespread abstraction, programming language, and concept for data plane

programming. P4 is a high-level language to dictate the forwarding behavior on a

variety of switches. In P4, the programmer declares how packets are to be processed,

and a compiler generates a configuration for a protocol-independent switch chip or

network interface card (NIC). The P4 language has rapidly captured the attention

of the networking community.

14

2.1. Self-driving Networks

(b) Network Function Virtualization (NFV): The idea behind NFV is to virtu-

alize hardware and networking resources, i.e. computing, storage, and networking

resources of commodity hardware [42]. The main architecture for NFV consists of

three building blocks: 1) NFV Infrastructure (NFVI) which virtualizes compute,

storage, and networking resources, 2) Virtual Network Functions (VNFs) which

are the software implementations of network functions deployed on virtual envi-

ronment, and finally 3) NFV Management and Orchestration (NFV MANO) block

that is responsible for managing and orchestrating VNFs and NFVI [28]. VNFs

can be chained to form an end-to-end network architecture. With the evolution of

the cloud infrastructure, many operators and vendors are embracing cloud native

and container-based software [26]. In this context, cloud-native network functions

(CNFs) is a way to develop, deploy, run and manage VNFs that exploit the benefits

of the cloud computing model. A fundamental principle of a cloud native applica-

tion is to decompose software into smaller, more manageable pieces. This is usually

done through the utilization of a microservice architecture [119].

(c) Network Slicing (NS): NS is a way of creating multiple logical networks on the

top of shared infrastructure. The idea of NS can be linked to the Infrastructure

as a Service (IaaS) cloud computing paradigm, in which several tenants share com-

puting, networking, and storage resources to create various virtual networks over

a common infrastructure [4]. In the context of 5G and beyond, NS can support

different use cases where each slice can be allocated based on the specific needs

of the use case. For example, critical communication such as smart grid metering

needs ultra-low latency and high data speed, whereas applications like virtual re-

ality (VR) gaming needs high bandwidth. NS supports these diverse services by

efficiently reassigns virtual resources from one network slice to another while ensur-

ing slices isolation [33]. Network slices consist of VNFs, physical network functions

(PNFs), value added services, network and cloud resources from dedicated or shared

software and hardware in the RAN, transport and core networks, combining differ-

ent technologies such as SDN and NFV. Recently, NS has gained popularity among

a large group of researchers from both academia and industry. Additionally, dif-

ferent standardization bodies such as 3GPP (3rd Generation Partnership Project),

IETF (Internet Engineering Task Force) and ITU-T (International Telecommuni-

15

2.2. Machine Learning for Network Management and Control

cation Union - Telecommunication Standardization Sector) are putting in a lot of

effort in NS [4].

SDN and NFV/CNF complement each other towards building an end-to-end software

defined and programmable network architecture. In LTE mobile core network, the data

and control plane functions are realized by dedicated hardware that implements each spe-

cialized function. However, the 5G core is designed to be “cloud-native”, in the sense

that the functions that handle the control and data planes, e.g., User Plane Function

(UPF) and Access and Mobility Management Function (AMF), could be deployed as

VNFs/containers on a cloud infrastructure. NFV and SDN have been employed in net-

working middleboxes in the core and extended to RAN functions. The development of

open and intelligent RAN (O-RAN) has received great attention [88]. O-RAN is pro-

posed to enhance the RAN performance through virtualized network elements and open

interfaces that incorporate intelligence into the RAN. O-RAN introduces programmable

components that can run optimization routines with closed-loop control and orchestrate

the RAN. Specifically, the O-RAN has logical controllers that monitor the status of the

network (e.g., number of users, load, throughput, resource utilization) and process this

data leveraging AI/ML algorithms to determine and apply control policies and actions in

the RAN, for example, network and RAN slicing, load balancing, handovers and schedul-

ing [14].

2.2 Machine Learning for Network Management and

Control

Artificial Intelligence (AI) and Machine Learning (ML) play a vital role in facilitating

closed-loop control and management, to realize self-driving automated network life-cycle

management [9]. The recent success of ML techniques has driven the adoption of different

learning perspectives to solving various networking problems. In this section, we present

the three different ML settings: supervised ML, unsupervised ML, and reinforcement

learning (RL). Deep learning [62] is a subset of machine learning that resembles biological

nervous systems and performs representation learning via multi-layer transformations,

that span over all three of the aforementioned learning paradigms. As deep learning has

16

2.2. Machine Learning for Network Management and Control

a growing number of applications in mobile and wireless networking [135], we discuss the

deep learning methods that are widely used in this domain.

2.2.1 Supervised Learning

Supervised learning consists of input variable x and an output variable y = f(x). An

algorithm is used to learn the mapping function f from x to y, so we can predict the output

variable y for any new input data x. Supervised learning can be divided into regression

and classification based on the continuity of the output [34]. Supervised learning is a very

broad domain and has several learning algorithms, each with their own specifications and

applications. In the following, the most common algorithms applied in the context of

communication networks are presented.

• Support Vector Machine (SVM): SVM can be used for classification, regression and

outliers detection, however, it is primarily used for classification problems. The idea

behind an SVM classifier is to create the best boundary line, i.e. hyperplane that

can separate n-dimensional space into distinct classes [127]. Linear SVM (as shown

in Figure 2.2) is used for linearly separated data while non-linear SVM is used when

the data cannot be classified by using a straight line. The SVM algorithm finds the

nearest data point of the lines from both classes, i.e. support vectors and tries to

maximize the distance between the support vector and the hyperplane (i.e. margin).

Figure 2.2: An illustration of Linear Support Vector machine (SVM).

17

2.2. Machine Learning for Network Management and Control

• Decision Trees (DT): DT is powerful supervised method for both classification and

regression. The basic idea of decision trees is splitting the original data into subsets

based on an attribute value test as shown in Figure 2.3. This technique is repeated

recursively on each derived subset, resulting in recursive partitioning. When the

subset at a node has the same value of the target variable, or when splitting no

longer adds value to the predictions, the splitting is complete [74]. Many supervised

learning methods, such as Random Forests [34], Bagging [18], and Boosting [105]

are built on the basis of DT.

Figure 2.3: An illustration of Decision Trees (DT).

• Random Forest (RF): RF is an ensemble-based learning algorithm, more specifically

is a version of the bagging method. It uses uncorrelated forest of decision trees to

perform either classification or regression [34]. RF combines decision trees, each tree

is comprised of various samples, called the bootstrap sample and a random subset

of features. Instead of using the output of one decision tree, the final output of RF

is generated using the majority vote for all trees in classification and the average in

case of regression as shown in Figure 2.4. RF solves the problem of overfitting that

may result from DT that uses all data in one tree. However, DT is more easier to

interpret compared with RF.

18

2.2. Machine Learning for Network Management and Control

Figure 2.4: An illustration of Random Forest (RF) [55].

• Artificial Neural Networks (ANNs): ANN is a biologically-inspired computer struc-

ture that mimics the way biological neurons communicate with each other, where

certain neurons (units) are activated given the current input, influencing the out-

put of the neural network model. Figure. 2.5 depicts an example of a typical ANN

which comprises of an input layer, one hidden layer, and an output layer. Each node

connects to another and has a weight and threshold. If a node’s output exceeds a

certain threshold value, the node is activated, and data is sent to the next layer of

the network. Otherwise, no data is sent to the network’s next layer. With deep

learning, ANNs can have many layers of linear and nonlinear transformations to

form deep neural networks (DNNs) that can be used to model complex data repre-

sentations. ANNs can be used for either classification (e.g., images classification) or

regression (e.g., stock prices forecasting). ANN is trained via what is called “back-

propagation” that is the process of fine-tuning the weights of ANN based on the

error rate (i.e. loss) obtained in the previous epoch (i.e. iteration) aiming to have

the weights values result in lower loss. Afterwards, LeCun and Bengio et al. [61]

proposed the now popular Convolutional Neural Network (CNN) architecture , but

development was stymied by the high computational cost of ANNs training and the

limited processing capabilities of existing computers at the time. Later, Graphics

processing units (GPUs) are developed to speed up the graphics processing and

gradually adopted by deep learning community to accelerate the training processes

of DNNs [104]. Thus, CNNs have been widely used for image recognition and

computer vision to identify patterns within an image [59]. Subsequently, various

19

2.2. Machine Learning for Network Management and Control

Figure 2.5: Architecture of typical Artificial Neural Network (ANN).

types of DNNs have been proposed for different purposes and applications such as

Long Short-Term Memory networks (LSTM) [47], and Recurrent Neural Networks

(RNNs) [80].

In the network management context, supervised learning is widely proposed in different

problems, for example, congestion control, network resource allocation and management,

traffic scheduling, performance prediction and load balancing [101]. Despite the superi-

ority of supervised method, many related challenges are present. One of these problems

is the data availability, mainly the labelled data for training supervised algorithms that

is usually inaccessible due to privacy issues. Furthermore, compared to traditional ML

models (e.g., SVM, DTs, and RF), deep learning methods achieve higher accuracy but

less interpretation, making them unpreferable for network administrators.

2.2.2 Unsupervised Learning

Motivated by the above-mentioned challenges posed by supervised ML methods in solving

wireless network problems, there is a surge of interest in the networking community to

employ unsupervised ML methods to optimize network performance [123]. In unsuper-

vised learning, the algorithm can explore the unlabeled data and discover some hidden

patterns in the data. Some widely used unsupervised learning methods are given below.

• k-means clustering: It is the simplest unsupervised learning method used for clas-

sification. The idea behind K-means algorithm is to divide the unlabeled data into

k different pre-defined clusters. Figure 2.6 demonstrates the k-means method; each

cluster is associated with a centroid which is randomly selected. Then, the algo-

rithm iteratively optimizes the positions of the centroids aiming to minimize the

20

2.2. Machine Learning for Network Management and Control

sum of distances between the data points and their corresponding centroids [69]. It

achieves a relatively good performance when there is a large distance between data

points.

Figure 2.6: An illustration of k-means clustering method (k=2).

• Isolation Forest (iForest): iForest algorithm is based on decision trees to separate

outliers from the rest of the data [71]. It is widely used for anomaly detection.

Recursively, it partitions the data by randomly choosing a feature and then selecting

a random split value, i.e. “cut-off-point” between the max and min values of that

feature. The algorithm then determines if this isolates the data point; if so, it stops;

otherwise, it selects a different feature and a different cut-off point at random. The

anomalous data points will be distinguished from the rest of the data by this random

splitting of features, which will result in shorter routes in trees (See Figure 2.7).

Figure 2.7: An illustration of Isolation Forest (iForest) [98].

21

2.2. Machine Learning for Network Management and Control

Figure 2.8: Architecture of Autoencoder (AE).

• Autoencoders (AEs): An autoencoder is a deep learning model based on ANNs

used to learn latent variables of the input data in an unsupervised manner [103].

Figure 2.8 shows the architecture of autoencoder that comprises of encoder, bottle-

neck and decoder. The encoder maps the input data into a set of latent variables

i.e. bottleneck , whereas the decoder maps the latent variables back into the input

space as a reconstruction. An autoencoder learns to compress the data while min-

imizing the reconstruction error which represents the difference between the input

data and the resulting reconstruction. Further, various extended versions from AEs

are proposed such as Denoising Autoencoder (DAE) [125] and Variational Autoen-

coders (VAEs) [58]. AEs are widely used for dimensionality reduction and anomaly

detection.

• Hierarchical Temporal Memory (HTM): HTM is a brain-inspired neural network

model that mimics the structural properties of neocortex and the way the human

brain processes information [44]. HTM employs online learning to automatically

discover relationships between features in real-time streams to provide unsuper-

vised predictions. Figure 2.9 shows the end-to-end framework for the HTM-based

prediction system. First, the data stream is taken as input and encoded into a

sparse distributed representation (SDR). An SDR is comprised of a large array of

bits, i.e. zeros and ones. Each bit carries some semantic meaning that activates

some bits (becomes 1’s) where at any point in time most of the bits are 0’s and the

22

2.2. Machine Learning for Network Management and Control

Data Stream Encoder
SDR

Classifier

Sparse Distributed
Representation (SDR)

Spatial Pooler Temporal Memory

Active Inputs

Inactive Inputs

Active Mini-columns

Inactive Mini-columns

synapse

Figure 2.9: High-level architecture of the HTM system.

rest are 1’s [95]. Next, the SDR is passed through the spatial pooler. The spatial

pooler is responsible for feed-forward learning and data representations into columns

and mini-columns. It models the activation of mini-columns given the feed-forward

inputs [24]. The spatial pooler’s output is fed into the temporal memory, which

then outputs a prediction for the next activation. Learning in the spatial pooler

and temporal memory is based on the connections, or synapses, between cells. The

temporal memory learns connections between cells in the same layer while spatial

pooler learns feed-forward connections between input SDRs and columns. Finally,

the SDR classifier learns associations between the temporal memory predictions at

current time and the predictions in the future. HTM has shown its efficiency and

real-time capability of sequence prediction and anomaly detection [5]. It can learn

both the temporal and spatial patterns using online training.

2.2.3 Reinforcement Learning

Reinforcement learning (RL) [117] is one of the most important machine learning paradigm,

with a substantial influence on tackling a variety of real-world problems. RL is essentially

a trial and error learning process in which an agent can take actions, receive a reward

for taking those actions, and then adjust its strategy until the reward saturates i.e., opti-

mal policy. However, in complex real-world problems, finding the optimal policy through

trial and error learning consumes a lot of time to converge because the agent has to ex-

plore all possible actions in the environment. As a result, reinforcement learning’s uses in

practice are quite restricted. To overcome RL limitations and with aid of deep learning,

researchers have proposed Deep Reinforcement Learning (DRL) that leverages the DNNs

in the learning process to accelerate the convergence time. As a result, various applica-

23

2.2. Machine Learning for Network Management and Control

tions have employed DRL instead of RL such as industry automation, computer vision,

gaming and robotics [68]. Further, DRL has lately been employed as an emerging tech-

nology in the domains of networking and communications to efficiently tackle different

problems.

Figure 2.10: An illustration of Reinforcement Learning (RL).

The standard RL setup is depicted in Figure 2.10. It consists of an “Agent” that

interacts with what is called “Environment” at each step of a discrete time series t =

0, 1, 2, 3 , T . At each time step t the agent receives some representation of the Environ-

ment’s state st ∈ S, where S is the set of possible states, and selects some action at ∈ A to

perform, where A is the set of possible actions. Reinforcement learning is mathematically

formulated as a Markov Decision Process (MDP) [96] which is a discrete time stochastic

control process. Typically, an MDP is defined by a tuple (S,A, P, r) where S is a finite

set of states, A is a finite set of actions, P is a transition probability from state s to state

s(t + 1) after action at is executed, and rt is the is the immediate reward obtained after

action at is performed. We denote π as a “policy” which is a mapping from a state to an

action. A policy or a strategy describes the agent’s behaviour at every time step t. The

goal of an MDP is to find an optimal policy to maximize the reward function. An MDP

can be finite or infinite time horizon. For the finite time horizon MDP, an optimal policy

π∗ to maximize the expected total reward is defined by maxπE[
∑T

t=0 rt(st, π(st))], where

at = π(st). If the time horizon is infinite, the objective can be to maximize the expected

discounted total reward by limT→∞maxπE[
∑T

t=0 γrt(st, π(st))], where γ ∈ [0, 1] is the dis-

count factor. A deterministic policy returns actions to be taken in each perceived state.

On the other hand, a stochastic policy outputs a distribution over actions. Under a given

policy π, we can define a value function or a Q-function which measures the expected

24

2.2. Machine Learning for Network Management and Control

accumulated rewards staring from any given state st or any pair (st, at) and following the

policy π, as shown below:

V π(s) = E[
∞∑

t=0

γtR(st, at, st+1)|at ∼ π(|st), s0 = s] (2.1)

Qπ(s, a) = E[
∞∑

t=0

γtR(st, at, st+1)|at ∼ π(|st), s0 = s] (2.2)

To solve MDP, dynamic programming methods have been widely used, i.e. iterative

algorithms (value iteration, Q-value iteration and policy iteration) [117]. However, such

types of algorithms require that the model (environment transitions probability and re-

wards) is explicitly known which is not applicable for all RL problems. This drives the

model-free RL algorithms that estimate the optimal policy without knowing the environ-

ment dynamics. In solving networking problems, several model-free RL methods have

been used [77]. Below we discuss some of these methods by dividing them into three

groups based on the agent’s learned objective.

(a) Q-learning algorithms or value-based methods [130] learn the value of choosing an

action on the current state (see Equ. 2.1) and the Q-value (see Equ. 2.2) by defining

state-action pair when following policy π to maximizes the future reward. The

Q-table represents the maximum future reward, for each state-action pair. In Q-

learning algorithm, the agent can efficiently find an optimal policy when the state

space and action space are discrete and small. However, when the state space

or/and action space are large, the Q-table is not scalable and hence the Q-learning

algorithm performance degrades. Thus, instead of using Q-table, DNNs is used to

retrieve the state and calculate different Q-values for each action and then, the action

with the highest Q-value is chosen, this is called Deep Q-Learning (DQL). Deep Q-

Network (DQN) [85] algorithm is the initial algorithm of DQL that being proposed

by DeepMind to play Atari video games. In DQN training, instead of using the

recent actions, random samples from the replay memory that stores all experiences

are used. Another DQL algorithm is Dueling DQN [129]; which defines advantage

A of taking action a in state s besides the value V . Dueling DQN estimates both

the value function and the action advantage function.

25

2.2. Machine Learning for Network Management and Control

(b) Policy gradient (PG) methods [118] or policy-based methods search for the optimal

agent’s policy πθ(a|s) by maximizing the agent’s cumulative long-term reward J as

in Equ. 2.3 with gradient ascent on the policy parameters θ∗. The policy gradients

can be interpreted as in Equ. 2.4 and estimated using trajectories collected under

the current policy. For each gradient update, the agent needs to interact with the

environment and collect transitions.

J(θ) = E[
∞∑

t=0

γtR(st, at)] (2.3)

∇θJ(θ) = E[
T∑

t=0

∇logπθ(at|st)Qπθ(st, at)] (2.4)

In Equ. 2.4, Qπθ is not known and needs to be estimated. Several approaches are

possible such as Reinforce algorithm [131] which uses Monte Carlo to calculate the

rewards as
∑T

k=t R(sk, ak). Additionally, Mnih et al. [84] presented Asynchronous

Advantage Actor Critic (A3C); an actor-critic method that uses an actor to select

the action while the critic estimates the value of being in a specific state. Then,

the critic updates the actor with the optimal value function. A3C makes use of

multiple agents, each of which has a replica of the environment and its own network

parameters. All agents learn asynchronously with each iteration and contribute to

the knowledge of the global network. The agent evaluates the rewards based on

the value of the advantage A = Qπ(s, a) − V π(s). Further, various policy-based

methods have been proposed such as Trust Region Policy Optimization (TRPO)

algorithm [106] and Proximal Policy Optimization (PPO) algorithm [107].

(c) Deterministic Policy Gradient (DPG) algorithms are new class of algorithms that

deal with continuous action space, first proposed by Silver et al. in [112]. The goal of

the algorithm to maximize the long-term reward J in Equ. 2.3. Unlike a stochastic

policy, deterministic policy µθ(s) relays on the gradient of the state distribution ρ

resulting in cumulative reward denoted by:

J(µθ) =

∫

S

ρµ(s)

∫

A

µθ(s, a)r(s, a)dads (2.5)

26

2.2. Machine Learning for Network Management and Control

Similar to Q-learning, for continuous actions the policy will move towards the max-

imum Q-value using the below gradient expectation:

E
s∼ρµk

[∇θµθ(s)∇aQ
µk

(s, a)|a=µθ(s)] (2.6)

Merging Equ. 2.5 and Equ. 2.6 will result in the below form of deterministic policy

gradient:

∇θJ(µθ) =

∫

S

ρµ(s)∇θµθ(s)∇aQ
π(s, a)|a=µθ(s)ds (2.7)

Based on the deterministic policy gradient, different algorithms have been presented

such as Deep Deterministic Policy Gradient (DDPG) [70]. DDPG is using actor-

critic method to lean the Q-value and the deterministic policy µθ(s) using Bellman

equation. Specifically, DDPG algorithm maintains a parameterized actor function

to specify the current policy by deterministically mapping states to a specific ac-

tion while the critic is learned using the Bellman equation. Further, other DPG

algorithms are proposed such as Twin Delayed Deep Deterministic Policy Gradient

algorithm (TD3) [35].

Multi-Agent Reinforcement Learning (MARL). MARL involves using several agents

at the same time. Similar to single agent RL which can be modeled as an MDP, MARL

problem can be formulated as Markov game (MG) that is a dynamic game with proba-

bilistic transitions played by multiple players, i.e. agents [110]. The simplest approach

in multi-agent settings is to use agents that learn and act independent of each other,

however, this approach is not applicable in most of the real applications. This is because

each agent’s policy changes during training, resulting in a non-stationary environment. In

other words, a policy changed by an agent will influence the policy of the other agents and

hence the lack of coordination will lead to conflicting policies. The training of multiple

agents has long been a computational challenge. Since the complexity in the state and

action space grows exponentially with the number of agents, even modern deep learning

approaches may reach their limits [39]. If the training of agents is applied in a centralized

manner, all information such as actions, observations and rewards from all gents should be

sent to a centralized unit. In contrast to the centralized scheme, Lowe et al. [75] adopted

27

2.2. Machine Learning for Network Management and Control

a training scheme called centralized training and decentralized execution in their proposal

of Multi-Agent DDPG (MADDPG) algorithm. This approach assumes the existence of

a centralized controller that collects extra information about the agents to ease training

but not used during the normal operation of the system.

Various networking control problems can be modeled as MDPs or MGs, where DRL

can be promising to solve these problems under the complex and dynamic networks envi-

ronment. However, different challenges still exist. First, DRL methods need huge amount

for data for training and testing which is not easily available, therefore most of the applica-

tions of DRL in networking are based on simulations that come with their own limitations.

Second, most of the current DRL methods are assuming static environment which is not

the case in the current heterogeneous networks. For example, 5G and beyond networks

are supporting diverse applications and devices that generate different traffic patterns

ending in highly dynamic environment. Moreover, this diversity increases the state space

and consequently the agent needs longer training time to converge. Last but not least,

most of networking applications are delay-sensitive and the network status is changing

frequently, therefore the time needed to collect observations and execute actions should

be kept minimal according to the addressed problem.

28

Chapter 3

Related Work and Research

Contributions

In this chapter, we review the related work considering comprehensive surveys and recent

publications in main journals and conferences. This review has been performed according

to the three perspectives and aspects as defined by the thesis scope introduced in Sec-

tion 1.2: anomaly detection in communication networks presented in Section 3.1, network

management and control using DRL, presented in Section 3.2, and, finally AI-based data

analytics in telemetry for network troubleshooting, presented in Section 3.3. We conclude

each perspective with our contributions of this thesis.

3.1 Anomaly Detection in Communication Networks

In this section, we divide the related work into two parts: 1) time series anomaly detection

algorithms or frameworks in general, and 2) network management related anomaly detec-

tion methods. We discuss them separately in the following and present our contributions

related to them.

3.1.1 Time series Anomaly Detection Methods

Anomaly detection in time series has attracted much attention from the research commu-

nity over the years. In this section, we list some of the recent works in anomaly detection

in time series by categorizing them into supervised and unsupervised.

29

3.1. Anomaly Detection in Communication Networks

In traditional supervised anomaly detection, a binary classifier is trained using both

normal and anomalous data; resulting in an imbalanced dataset without taking the tem-

poral pattern of the data into account. Thus, for time series anomaly detection, the

algorithm should be able to handle the temporal information in the data. Based on the

nearest neighbor algorithm, Bagnall et al. [10] presented a novel classifier called NN-DTW

which utilizes dynamic time warping similarity measure to achieve high accuracy. Con-

sequently, various supervised classifiers have been presented as ensemble models based

on nearest neighbor algorithm such as Proximity Forest [76]. Aligned with deep learn-

ing advances, Fawaz et al. [29] proposed InceptionTime which is a supervised time series

classification method that consists of an ensemble of CNN models. Despite their su-

perior performance in anomaly detection, supervised approaches are less prevalent than

unsupervised methods due to the scarcity of labeled training data.

In contrast, various unsupervised methods have been presented for anomaly detection

such as isolation methods that focus on separating outliers from the rest of the data.

For instance, Isolation Forest (IF) [71] is an ensemble of binary decision trees; works in

a way that the data samples that reside in trees branches are anomalies where as the

samples that are far down in the tree are likely to be non-anomalous. Unsupervised ap-

proaches based on deep learning techniques, particularly autoencoder (AE) [103] based

methods, have recently gained a lot of attention. These methods use the reconstruc-

tion error as the anomaly score, i.e. samples with a high score are considered to be

anomalous. Zong et al. [138] proposed a method that uses a deep autoencoder and a

Gaussian Mixture Model (GMM) to exploit the density distribution of multidimensional

data without considering the temporal dependencies. Also, Park et al. [92] presented a

variational autoencoder(VAE) model with LSTM; the LSTM-based encoder converts the

input data and its temporal dependencies into a latent space. During decoding, it uses

the latent space representation to estimate the output distribution. LSTM-VAE defines a

sample as an anomaly when the log-likelihood of the current sample is below a threshold.

Furthermore, Su et al. [114] demonstrated the effectiveness of using RNN to model the

temporal dependencies between multivariate time series. They employed VAE for repre-

sentation learning to map observations to stochastic variables and use the reconstruction

probabilities of input samples as anomaly scores. Besides the autoencoder-based meth-

ods, different proposals have been presented which leverage the Generative Adversarial

30

3.1. Anomaly Detection in Communication Networks

Networks (GANs) [37] in detecting anomalies. For example, Li et al. [65] proposed a

GAN framework to detecting anomalies in time series. The GAN network is combined

with LSTMs to capture the temporal correlation of time series distributions. Moreover,

Audibert et al. [7] presented USAD which combines the advantages of autoencoders and

GANs. The autoencoder model is adversarially trained to amplify the reconstruction

errors for anomalies so that the USAD model can detect the anomalies with small de-

viations from normal data. Feng et al. [31] introduced NSIBF, an unsupervised method

for detecting operational failures in cyber-physical systems (CPS), which differs from ear-

lier approaches. A neural network is employed to capture the dynamics of CPS using

a state-space model which is aimed to address the instability of CPS data. A Bayesian

filtering method is applied on the “identified” state-space model, which detects anomalies

by estimating the likelihood of observed measurements over time.

3.1.2 Anomaly Detection Methods for Mobile Network Perfor-

mance

In the context of mobile networks, anomaly is defined when the network experiences un-

expected traffic pattern that is different than the usual behavior of the network. Mobile

network performance is usually monitored using key performance indicators (KPIs). Sev-

eral methods have been presented focusing on predicting anomalies in network traffic.

For example, Hadj-Kacem et al. [41] proposed a proactive anomaly detection model that

captures the correlation between the different KPIs using functional principal component

analysis (FPCA). Then, they used the logistic regression classifier for the functional data

to predict anomalies. Their model was evaluated on LTE dataset consists of four KPIs,

namely average latency, average active user, downlink traffic volume and downlink load.

They defined the anomaly if the value of one of the four KPIs exceeds a certain threshold.

The logistic regression model achieved accuracy and F1-score of 71% and 70%, respec-

tively. Also, Khatouni et al. [56] leveraged supervised classification models, namely SVM,

DT, and LR to predict the latency in mobile broadband networks. They considered a

large-scale dataset from three commercial mobile operators. However, they revealed that

the use of traditional machine learning models to predict RTT in mobile broadband net-

works does not show high accuracy. Their results showed a performance of 71% (F1-score)

when using DT. Alternatively, Sundqvist et al. [115] proposed an unsupervised model for

31

3.1. Anomaly Detection in Communication Networks

detecting latency anomalies in RAN. They used statistical, probabilistic, and clustering

methods to automatically learn the functional behavior of RAN and identify where latency

exceeds 1ms which resulted in an F1-score of 60%. Further, Ping et al. [94] formulated the

cell outage detection problem in mobile networks as an anomaly detection problem. They

proposed an autoencoder-based unsupervised model leveraging the measurement report

information from user equipment (UE) namely, RSRP and RSRQ values of the serving

cell and the neighboring cells, and the radio link failure (RLF). Another work based on

unsupervised learning is proposed by Elsayed et al. [102] which is a deep learning frame-

work based on LSTM-autoencoder and One-class SVM (OC-SVM) to detect abnormal

traffic data. The LSTM-autoencoder is trained to learn the normal traffic pattern and to

learn the compressed representation of the input data and then feed it to an OC-SVM

model. The hybrid model overcomes the shortcomings of the separate OC-SVM, which

has low capability to operate with massive and high-dimensional datasets.

Contributions: Detecting anomalous behavior on a set of correlated time series sig-

nals has been an active research area in the machine learning community for a long

time [21, 91]. The aforementioned anomaly detection related work can be categorized into

two main classes based on the algorithm structure: 1) traditional Ml-based and 2) deep

learning-based. The nature of the current communication networks poses some difficulties

for developing an anomaly detection system. One big challenge faced by deep learning-

based methods is their feasibility. Since many networking applications are delay-sensitive,

it is essential to design a real-time anomaly detection system with less computation loads.

Moreover, deep learning algorithms need a large amount of data to perform well. There-

fore, the prior efforts [56, 102, 41] mostly focus on traditional ML methods coming with

the cost of the performance accuracy. Another challenge in networking, a large amount

of data arrives at a rapid rate. The sheer volume of the data makes it difficult to store

it in its entirety, and it is even more difficult to operate on it in real time. Furthermore,

most of the communication networks such as mobile networks are distributed infrastruc-

ture composed of variety of probes and sensors across the entire network. Most of the

current anomaly detection methods aggregate all the data to a single point and process

them together. Such an approach, however, may become difficult to realise or infeasible

in the future due to the exponentially growing size and scale of the network. Hence,

carrying out an efficient and distributed anomaly detection remains challenging. Finally,

32

3.1. Anomaly Detection in Communication Networks

network behavior changes rapidly over time and would require frequent retraining of a

static model which is specifically challenging with deep learning-based approaches. To

tackle these challenges with both traditional ML and deep leaning methods for detecting

anomalies in communication networks we present three different contributions. In the

first part, our Article I employs traditional ML methods to predict high delays in mobile

broadband networks. To improve the model accuracy we build a supervised ensemble of

classifiers to detect increases in delay, unlike prior works that relay on one classification

algorithm. Our proposed model examines whether jumps in round trip times (RTTs) have

a pattern that can be predicted beforehand. We leverage per second RTT measurements

from hundreds of probes in two LTE cellular networks. Besides the RTT measurements,

we collect connection metadata which includes radio and connectivity parameters namely,

Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ),

Received Signal Strength Indicator (RSSI) and Radio Access Technology (RAT). We are

interested in investigating whether high delays, the top 10%, can be predicted based on

historical RTT values and available high-level metadata about connection quality. We

construct a parsimonious explainable model that provides an accuracy of 80% and does

not appear to be specific to a particular mobile operator. Further, we investigate whether

our model can be extended to 5G using a small dataset with extra 5G metadata, result-

ing in an accuracy of 88%. Our model indicates that RTTs are long-range correlated

and shows that radio measurements of channel occupancy are accurate predictors of the

onset of high delays. Finally, our model does not require extensive retraining but rather

a modest retraining with a weekly cycle.

In the second part, our Article IV proposes a system that Network Operations

Centres and Support Centres for smaller operators can use in failure situations to identify

the crosslayer network outages in a global ISP network. We leverage supervised learning

algorithm, namely SVM to assist in classifying different outages. Our choice is highly

dependent on the small dataset we collect in which the deep learning methods can’t

provide good results. Our system is two-stage; in the first stage, we passively collect

Layer1-Layer3 data and classify the Layer2 events to an F1-score of 0.99. By adding

a second stage with active monitoring to collect UDP ping data we predict other types

of root causes with a 0.66 F1-score. Our analysis interestingly shows that Bidirectional

33

3.2. Deep Reinforcement Learning in Mobile Network Management and Control

Forwarding Detection (BFD) features, which are the easiest to collect, give the best results

for outage classification.

In the third part aligned with the research roadmap that evolves from supervised learn-

ing to unsupervised, we investigate the use of unsupervised learning in our dataset. Recent

works on multivariate anomaly detection based on unsupervised deep learning [114, 7, 31]

show promising results on several time series tasks, however, their performance on mo-

bile network data needs to be further studied. In addition, such unsupervised learning

methods are less applicable in many real-world scenarios because they need normal data

for training, process data in batches and require considerable training data. To overcome

these issues from state-of-the-art, our Article II presents a novel distributed anomaly

detection architecture, RCAD, that combines HTM with intelligent model exchanging be-

tween different parts of the system, i.e. agents, to maximize anomaly detection accuracy.

Compared with the above-mentioned approaches in Section 3.1.1, RCAD can process data

streams in real time, learn the patterns of data continuously without training and improve

the overall system performance by sharing the knowledge between models participating

in the system. To the best of our knowledge, RCAD is the first system that proposes

model replacement as a viable strategy for boosting accuracy. We implement and eval-

uate RCAD on real world measurements from a commercial mobile network. RCAD

achieves over 0.7 F-1 score significantly outperforming the state-of-the-art methods.

3.2 Deep Reinforcement Learning in Mobile Network

Management and Control

The advances in DRL have led to outstanding success in various domains. DRL has

been recently proposed for solving many wireless communication problems. Several sur-

veys summarized these works. For example, Luong et al. [77] provided a comprehensive

overview of DRL application in communications and networking such as dynamic net-

work access, data rate control, wireless caching, data offloading, network security and

connectivity preservation. Compared to [77] which focused on single agent problems, Fe-

riani et al. [32] presented an overview of both single-agent and multi-agent reinforcement

learning as key enabling technologies of future wireless networks. They highlighted the

potential for applying cooperative multi-agent reinforcement learning to different domains

34

3.2. Deep Reinforcement Learning in Mobile Network Management and Control

such as mobile edge computing (MEC), unmanned aerial vehicles (UAV) networks and

massive MIMO. Other surveys reviewed the application of deep reinforcement learning

algorithms in specific domains such as internet of things (IoT) [63], URLLC in 6G net-

works [111], vehicular networks in 6G [121] and mobile edge caching [136]. In general,

the previous proposals can be divided into two groups based on the action space. The

first applies deep Q-learning to problems with a discrete action space, while the second

applies actor-critic methods to problems with a continuous action space. Further, almost

all existing work revolves around executing a single principal action. For example, Nasir

et al. [87] proposed a power allocation scheme based on deep Q-learning model (DQN).

Each transmitter collects channel state information and QoS information from several

neighbors and adapts its own transmit power accordingly. Also, Li et al. [66] used DQN

method to tackle the resource allocation multi-user computation offloading in wireless

MEC. Recently, Ren et al. [99] addressed the problem of dynamic resource allocation

for MEC slicing system using DDPG algorithm. They formulated the resource alloca-

tion problem as an MDP in which, the wireless resources and computing resources are

configured dynamically according to the requirements of different types of slices to maxi-

mize the network operator revenue. Furthermore, Mei et al. [81] presented a hierarchical

framework based on integrating DDPG algorithm and double deep-Q-network algorithm

to solve RAN slicing problem. Specifically, this framework consists of two controllers: an

upper-level controller which adjusts the slice configuration to improve QoS performance

at a coarse granularity and a lower-level controller that schedules network resources and

power allocation to active UEs in each network slice at a fine granularity. Their results

showed that the physical resource blocks (RBs) in RAN slices can be managed efficiently

using the DDPG for RB allocation. However, in this method, if the number of slices is

different from the number of slices during training, RB allocation to slices is impossible.

Therefore, RB allocation independent of the number of slices was proposed in [73], where

Liu et al. presented a method called DeepSlicing which tackles the problem of resource

allocation in multi-slicing networks in two stages. The first stage allocates resources to

users within a slice through DRL that learns the optimal policy in each network slice

to maximize the overall utilities of users in the slice while satisfying the users’ service

level agreement (SLA). The second stage coordinates the resource allocation across the

network slices.

35

3.2. Deep Reinforcement Learning in Mobile Network Management and Control

Contributions: The above-mentioned work focused on tracking and optimizing a

single metric like coverage [124], power management [87], throughput [73] and resource

sharing [99, 81] at a time. It flows directly from this limited focus that current approaches

resort to often applying a single control action, e.g. adjusting base station transmit power.

However, a multi-slice network is by definition a multi-service network. Hence, tracking

a single metric is bound to assure quality for a subset of the services that run on the

network. A viable approach to realizing self-driving mobile networks must be able assure

quality for all running slices according to their priority and SLAs. Achieving this requires

choosing and mixing diverse control actions, e.g. simultaneously adjusting coverage and

optimizing resource allocation. In our Article III we aim to bridge this gap by proposing

a DRL-based approach to manage resource utilization and performance in the RAN. Our

approach tracks and optimizes diverse use cases. To this end, it employs several different

control actions. We propose ICRAN, a novel control framework based on DRL that is

capable of maximizing resource utilization and minimizing SLA violations in a multi-slice

RAN. ICRAN introduces a novel reward function and an action space with diverse actions

which allows for optimizing multiple objectives collectively, namely antenna tilt, traffic

load balancing, and resource allocation. We investigate two different control architectures

for our framework; centralized and distributed control. In the centralized framework, we

formulate the problem as a single-agent DRL whereas, the distributed problem is solved

via a multi-agent DRL. Finally, we validate the performance of our proposed framework

through extensive simulations using ns-3. The experiment results show that our method

outperforms the state-of-the-art methods in radio resources management. Moreover, the

advantage of our method persists under different networking conditions such as high

congestion and radio failure. Our evaluations show that ICRAN converges quickly to

strategies that help maximizing radio resource utilization and minimizing SLA violations

for the entire network. ICRAN outperforms approaches that leverage DRL, implements

adaptive priority-based resource management as well as those resorting to heuristics to

react to network changes. The benefit from ICRAN spans regimes where the network is

lightly loaded, running at its capacity, and is heavily loaded. For example, ICRAN utilizes

97% of available radio resources when the network is loaded at 200% that is 7% higher

than the next best method. At the same time, it reduces the number of SLA violations

36

3.3. AI-based Data Analytic in Telemetry

for slices with stringent requirements, that is achieved by the next best method, by up to

a factor of three.

3.3 AI-based Data Analytic in Telemetry

Software Defined Networking (SDN), through a separation of network control and data

planes, has made network management tasks more versatile. Centralized network teleme-

try is often used in traditional SDN architecture [52]. Flow monitoring tools such as

SNMP [20], sFlow [128], and NetFlow [3] are used to collect network telemetry data such

as link congestion and link delay from different networking components. Monitored data

is then transferred to the network controller to automate and optimize network manage-

ment functionality by using machine learning algorithms on the centrally accessible data.

One of the main goals of network monitoring in self-driving networks is to identify faults in

the network and resolve the issues in a timely manner with minimal overhead. Thus, ad-

vanced monitoring solutions have been proposed to identify any performance degradation

in the network, while attempting to balance high detection rates with minimal monitoring

overhead costs. z-TORCH [108] is an automated NFV orchestration solution utilizing ML

techniques to enhance quality of decisions in Management and Orchestration (MANO)

systems. It adapts monitoring load based on VNF profile time variations. CellScope [89]

uses domain specific knowledge to apply Multi-task Learning (i.e. use of several models in

parallel) on RAN data. They are able to perform RAN troubleshooting and mobile phone

energy bug diagnosis more efficiently compared to contemporary solutions. The authors

of [122] proposed self-tuning, adaptive monitoring mechanism that adjusts measurement

granularity based on observed traffic dynamics.

In the context of mobile core networks, P4 switches have been used for real-time attack

detection and mitigation [15], enhancing the User Plane Function (UPF) functionality [78]

and ensuring Quality-of-Service (QoS) at the slice level [100]. LossSight [120] tackles the

problem of packet loss when using In-band Network Telemetry (INT), through “Alternate

Marking” the telemetry headers of each flow. They are able to correctly identify and locate

packet loss events, even when telemetry information is lost alongside the packets carrying

it. There are also approaches that do not rely on P4. The authors of [52] proposed an

37

3.3. AI-based Data Analytic in Telemetry

extension to INT tuned for wireless multihop networks. Each node runs both a telemetry

module and an agent that defines the optimal local traffic engineering policy.

To troubleshoot network with anomalies in performance, knowledge about the causes

of anomalies is the necessary. Hireche et al. [46] presented an AI-powered trustworthy dis-

tributed Self-driving network framework. The framework responds to in-band telemetry

data through P4 and is able to modify the P4 code based on detected events. Moulay et

al. [86] proposed an unsupervised ML method, Troubleshoot Trees (TTrees), to classify

the reason of an anomaly in cellular performance with minimal amount of data and quick

training. For a set of Key Performance Indicators (KPIs), TTree first uses a ML method

to separate instances that cannot be classified. Then it uses a clustering method to group

these unclassified instances, that are considered anomalies, into separate groups. At this

latter stage an expert should inspect the clusters and assign that meaning [40].

Contributions: A cloudified mobile network is expected to deliver multitude of ser-

vices, on parallel slices, with reduced capital and operating expenses. In the context of 5G

mobile systems, to ensure that Service Level Agreements (SLA) of a customized end-to-

end sliced service are met, it not only needs to monitor resource usage and characteristics

of data flows on the virtualized network components and interfaces of its cloud mobile

network but also to track performance at its radio interfaces and user equipments (UEs).

With millions of UEs, a central monitoring architecture is not feasible. Our Article V

proposes a distributed telemetry framework in which UEs act as early warning sensors.

Upon flagging an anomaly, the cloudified mobile network activates its machine learning

model to attribute the cause of the anomaly. For root cause analysis we employ active,

passive and in-band telemetry in our network. Our framework achieves an impressive

performance of 85% F1 score in detecting anomalies caused by different bottlenecks, and

an overall 89% F1 score in attributing these bottlenecks.

38

Chapter 4

Conclusion and Future Work

4.1 Conclusion

Traditional network management approaches cannot cope with the ever-growing network-

ing services, applications, and the number of connected devices. Thus, a radical shift in

the network management is needed. To this end, this thesis investigates the advances

of AI/ML in network management automation. We utilize different learning paradigms

to realize the proposed architecture of “self-driving networks” which is highly tied with

intelligence and learning. First, we empirically investigated whether RTTs in mobile

broadband networks could be accurately predicted. Using measurement data from a large

number of probes, we found that a supervised binary ensemble learning-based model can

accurately predict delay classes 80% and 88% of the time for 4G and 5G, respectively.

Furthermore, our findings show that the accuracy of the model varies across probes and

is a function of the delay profile of the probe. The model is more accurate for probes with

high-delay episodes that last longer. Our model is transferable to other contexts that re-

quire only minor adjustments. This thesis also presents a supervised learning framework

that Network Operations Centres and Support Centres for smaller operators can use to

troubleshoot crosslayer outages in ISP networks. Our proposed model can classify 99% of

Layer2 problems and 70% of other problems correctly. This is a significant improvement

when we observe that only 35% of the customer cases we studied received any Reason for

Outage (RFO) response from the Customer Support Centre.

While supervised methods appear to be effective for binary classification and anomaly

detection in networking applications, they are facing challenges such as the availability of

39

4.2. Future Work

labelled data and the need for retraining. Thus, this thesis presents RCAD, a Real-time

Collaborative Anomaly Detection framework in mobile networks based on the unsuper-

vised HTM and model replacement. The HTM model predicts anomalies in real time by

learning sequences in mobile network data streams. Model replacement allows network

probes with poor performing models to benefit from other probes that have better per-

forming models. We evaluate RCAD on a two-week long dataset from 10 probes that are

part of a setup for measuring the performance of commercial mobile broadband networks

in Norway. RCAD has demonstrated superior performance to recent deep learning based

methods in terms of F1-score. RCAD with DRL-based model replacement has achieved

a level of performance comparable to a centralized HTM.

Inspired by the remarkable achievements of deep reinforcement learning in solving

complex control problems in highly dynamic environments such as mobile network, this

thesis proposes ICRAN, a novel control framework for optimizing resources utilization

while minimizing SLA violations in a multi-slice RAN. ICRAN comprises two DRL-based

architectures: centralized ICRAN and distributed ICRAN. Through extensive simulations

using ns-3, we have confirmed the substantial advantages granted by ICRAN over other

slicing schemes and recent works in terms of resources utilization and QoS assurance.

ICRAN is, to the best of our knowledge, the only framework that simultaneously addresses

multiple RAN problems.

Finally, as a proof of concept, this thesis proposes a distributed approach for timely

collecting telemetry, detecting and attributing issues in mobile networks. We have built

a software defined virtualised testbed that resembles a cloudified mobile network and

used it to assess our telemetry architecture. We we have introduced a set of performance

bottlenecks both in the RAN and the core. Based on ML methods, our system achieved

an impressive performance of 85% F1 score in detecting bottlenecks by the end-user and

overall 89% F1 score in attributing the bottlenecks based on network measurement.

4.2 Future Work

Several important research issues remain to be addressed in the future. Some of which

we discuss next.

40

4.2. Future Work

First, the findings in Article I are encouraging and can help multipath transport pro-

tocols such as multipath TCP (MPTCP) or multipath QUIC to decide which interface

to use for sending the next packet. Thus, this work can be implemented in a multipath

scheduler to proactively bound delays. In our analysis, we highlight that our model strug-

gles when predicting short delay episodes. Therefore, it is important to investigate the

means to improve the detection of short-lasting delay episodes such as more fine-grained

measurements. Another step further in this research would be considering mobility cases

in our measurements dataset.

Second, our model proposed in Article II has demonstrated superior performance to

three deep learning-based methods namely OmniAnomaly [114], USAD [7] and NSIBF [31],

however, this finding could only be made on mobile networks datasets. For future work, it

would be interesting to test our method on applications with similar requirements as our

networking use case in addition to looking deeper into different model exchange methods.

Third, even though our proposed intelligent control framework in Article III has suc-

ceeded in achieving its aim to optimize the overall network performance while satisfying

the QoS requirements in multi-slice RAN, we highlight a number of limitations and en-

hancements that we plan to address in the future work. We need to include other types

of traffic with different patterns such as IoT to support the increasing heterogeneous ser-

vices and complex networks. Another issue is that our topology is relatively small, which

may raise concerns about whether our framework can scale to much bigger networks.

However, we believe that our preliminary results which have shown minimal differences

between fully and partial observability distributed learning approaches are promising.

Last, our proposed telemetry architecture and bottleneck identification system pre-

sented in Article V has been implemented and evaluated in small testbed that comprises

only one UE and eNB. We consider this as a limitation for our work and we plan to scale

our testbed in the lab to include more UEs and assess our approach accordingly.

41

Bibliography

[1] IMT traffic estimates for the years 2020 to 2030. https://www.itu.int/dms_pub/

itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf. Date Accessed: Apr. 20, 2022.

[2] ns-3 Network Simulator. https://www.nsnam.org/. Date Accessed Nov. 10, 2021.

[3] Cisco IOS NetFlow. https://www.cisco.com/c/en/us/products/

ios-nx-os-software/ios-netflow/index.html, July 2017. Date Accessed:

May 12, 2022.

[4] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu

Flinck. Network slicing and softwarization: A survey on principles, enabling tech-

nologies, and solutions. IEEE Communications Surveys & Tutorials, 20(3):2429–

2453, 2018.

[5] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. Unsupervised real-

time anomaly detection for streaming data. Neurocomputing, 262:134–147, 2017.

[6] Azzam Alsudais and Eric Keller. Hey network, can you understand me? In

2017 IEEE Conference on Computer Communications Workshops (INFOCOM WK-

SHPS), pages 193–198. IEEE, 2017.

[7] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A

Zuluaga. USAD: Unsupervised anomaly detection on multivariate time series. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Dis-

covery & Data Mining, pages 3395–3404, 2020.

[8] AWS. Summary of the AWS Service Event in the Northern Virginia (US-EAST-1)

Region. https://aws.amazon.com/message/12721/, December 2021. Date Ac-

cessed: Jan. 19, 2022.

42

https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-M.2370-2015-PDF-E.pdf
https://www.nsnam.org/
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
https://aws.amazon.com/message/12721/

Bibliography

[9] Sara Ayoubi, Noura Limam, Mohammad A Salahuddin, Nashid Shahriar, Raouf

Boutaba, Felipe Estrada-Solano, and Oscar M Caicedo. Machine learning for cogni-

tive network management. IEEE Communications Magazine, 56(1):158–165, 2018.

[10] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.

The great time series classification bake off: a review and experimental evaluation of

recent algorithmic advances. Data mining and knowledge discovery, 31(3):606–660,

2017.

[11] Ryan Beckett, Ratul Mahajan, Todd D. Millstein, Jitendra Padhye, and David

Walker. Don’t Mind the Gap: Bridging Network-wide Objectives and Device-level

Configurations. In Proceedings of the ACM SIGCOMM 2016 Conference, Floria-

nopolis, Brazil, August 22-26, 2016, pages 328–341, 2016.

[12] Ryan Beckett, Ratul Mahajan, Todd D. Millstein, Jitendra Padhye, and David

Walker. Network configuration synthesis with abstract topologies. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 437–451,

2017.

[13] Roberto Bifulco and Gábor Rétvári. A survey on the programmable data plane:

Abstractions, architectures, and open problems. In 2018 IEEE 19th International

Conference on High Performance Switching and Routing (HPSR), pages 1–7. IEEE,

2018.

[14] Leonardo Bonati, Salvatore D’Oro, Michele Polese, Stefano Basagni, and Tommaso

Melodia. Intelligence and learning in O-RAN for data-driven NextG cellular net-

works. IEEE Communications Magazine, 59(10):21–27, 2021.

[15] Michel Bonfim, Marcelo Santos, Kelvin Dias, and Stenio Fernandes. A real-time

attack defense framework for 5G network slicing. Software: Practice and Experience,

50(7):1228–1257, 2020.

[16] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-

ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al. P4:

Programming protocol-independent packet processors. ACM SIGCOMM Computer

Communication Review, 44(3):87–95, 2014.

43

Bibliography

[17] Raouf Boutaba, Nashid Shahriar, Mohammad A Salahuddin, Shihabur R Chowd-

hury, Niloy Saha, and Alexander James. AI-driven Closed-loop Automation in 5G

and beyond Mobile Networks. In Proceedings of the 4th FlexNets Workshop on

Flexible Networks Artificial Intelligence Supported Network Flexibility and Agility,

pages 1–6, 2021.

[18] Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

[19] Rich Caruana and Alexandru Niculescu-Mizil. An empirical comparison of super-

vised learning algorithms. In Proceedings of the 23rd international conference on

Machine learning, pages 161–168, 2006.

[20] Jeffrey D Case, Mark Fedor, Martin L Schoffstall, and James Davin. Simple network

management protocol (SNMP), 1989.

[21] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A

survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[22] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-

tenstreich. Catching the microburst culprits with snappy. In Proceedings of the

Afternoon Workshop on Self-Driving Networks, pages 22–28, 2018.

[23] The P4 Language Consortium. Improving Network Monitoring and Management

with Programmable Data Planes.

[24] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. The HTM spatial pooler—A neo-

cortical algorithm for online sparse distributed coding. Frontiers in computational

neuroscience, page 111, 2017.

[25] Santosh Janardhan, Engineering at Meta. Update about the October 4th out-

age. https://engineering.fb.com/2021/10/04/networking-traffic/outage/,

October 2021. Date Accessed: Jan. 19, 2022.

[26] Ericsson. The cloud native transformation: A guide to cloud na-

tive design and operations principles. https://www.ericsson.

com/assets/local/digital-services/offerings/core-network/

5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.

44

https://engineering.fb.com/2021/10/04/networking-traffic/outage/
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305

Bibliography

371240152.1614336546-1050635048.1612564305, October 2020. Date Ac-

cessed: Feb. 09, 2022.

[27] GR ETSI. Experiential Networked Intelligence (ENI); ENI use cases. 2018.

[28] ETSI NFV. Network functions virtualization: An introduction, benefits, enablers,

challenges call for action, 2012. Darmstadt, Germany, SDN OpenFlow World

Congr., White Paper.

[29] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,

Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-

Alain Muller, and François Petitjean. InceptionTime: Finding AlexNet for Time

Series Classification. Data Mining and Knowledge Discovery, 34(6):1936–1962, 2020.

[30] Nick Feamster and Jennifer Rexford. Why (and How) Networks Should Run Them-

selves. In Proceedings of the Applied Networking Research Workshop, ANRW 2018,

Montreal, QC, Canada, July 16-16, 2018, page 20, 2018.

[31] Cheng Feng and Pengwei Tian. Time series anomaly detection for cyber-physical

systems via neural system identification and bayesian filtering. In Proceedings of

the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pages

2858–2867, 2021.

[32] Amal Feriani and Ekram Hossain. Single and multi-agent deep reinforcement learn-

ing for AI-enabled wireless networks: A tutorial. IEEE Communications Surveys &

Tutorials, 2021.

[33] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Mahesh K Marina.

Network slicing in 5G Survey and challenges. IEEE Communications Magazine,

55(5):94–100, 2017.

[34] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical

learning, volume 1. Springer series in statistics New York, 2001.

[35] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation

error in actor-critic methods. In International conference on machine learning, pages

1587–1596. PMLR, 2018.

45

https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305
https://www.ericsson.com/assets/local/digital-services/offerings/core-network/5g-core-guide-cloud-native-transformation.pdf?_ga=2.39204577.371240152.1614336546-1050635048.1612564305

Bibliography

[36] Piotr Gaw lowicz and Anatolij Zubow. Ns-3 meets OpenAI gym: The playground for

machine learning in networking research. In Proceedings of the 22nd International

ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, pages 113–120, 2019.

[37] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

Advances in neural information processing systems, 27, 2014.

[38] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin Vahdat.

Evolve or Die: High-Availability Design Principles Drawn from Googles Network

Infrastructure. In Proceedings of the ACM SIGCOMM 2016 Conference, Florianop-

olis, Brazil, August 22-26, 2016, pages 58–72, 2016.

[39] Sven Gronauer and Klaus Diepold. Multi-agent deep reinforcement learning: a

survey. Artificial Intelligence Review, pages 1–49, 2021.

[40] TPAW Group et al. In-band Network Telemetry (INT) data plane specification,

June 2020.

[41] Imed Hadj-Kacem, Sana Ben Jemaa, Sylvain Allio, and Yosra Ben Slimen. Anomaly

prediction in mobile networks: A data driven approach for machine learning algo-

rithm selection. In NOMS 2020-2020 IEEE/IFIP Network Operations and Manage-

ment Symposium, pages 1–7. IEEE, 2020.

[42] Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function

virtualization: Challenges and opportunities for innovations. IEEE Communications

Magazine, 53(2):90–97, 2015.

[43] Nikhil Handigol, Brandon Heller, Vimalkumar Jeyakumar, David Mazières, and

Nick McKeown. I know what your packet did last hop: Using packet histories

to troubleshoot networks. In 11th {USENIX} Symposium on Networked Systems

Design and Implementation ({NSDI} 14), pages 71–85, 2014.

[44] Jeff Hawkins and Subutai Ahmad. Why neurons have thousands of synapses, a

theory of sequence memory in neocortex. Frontiers in neural circuits, page 23,

2016.

46

Bibliography

[45] Haiyang He, Yuanyuan Qiao, Sheng Gao, Jie Yang, and Jun Guo. Prediction of user

mobility pattern on a network traffic analysis platform. In Proceedings of the 10th

International Workshop on Mobility in the Evolving Internet Architecture, pages

39–44, 2015.

[46] Othmane Hireche, Chafika Benzäıd, and Tarik Taleb. Deep data plane programming

and AI for zero-trust self-driven networking in beyond 5G. Computer Networks,

203:108668, 2022.

[47] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Com-

putation, 9(8):1735–1780, 11 1997.

[48] P. Horn. Autonomic computing: IBM’s perspective on the state of information

technology. 2001.

[49] Mikio Iwamura. NGMN View on 5G Architecture. In 2015 IEEE 81st Vehicular

Technology Conference (VTC Spring), pages 1–5. IEEE, 2015.

[50] Arthur S Jacobs, Ricardo J Pfitscher, Rafael H Ribeiro, Ronaldo A Ferreira, Lisan-

dro Z Granville, and Sanjay G Rao. Deploying Natural Language Intents with Lumi.

In Proceedings of the ACM SIGCOMM 2019 Conference Posters and Demos, pages

82–84, 2019.

[51] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira, and Lisan-

dro Zambenedetti Granville. Refining network intents for self-driving networks.

Computer Communication Review, 48(5):55–63, 2018.

[52] Prabhu Janakaraj, Pinyarash Pinyoanuntapong, Pu Wang, and Minwoo Lee. To-

wards in-band telemetry for self driving wireless networks. In IEEE INFO-

COM 2020-IEEE Conference on Computer Communications Workshops (INFO-

COM WKSHPS), pages 766–773. IEEE, 2020.

[53] Enio Kaljic, Almir Maric, Pamela Njemcevic, and Mesud Hadzialic. A survey on

data plane flexibility and programmability in software-defined networking. IEEE

Access, 7:47804–47840, 2019.

[54] Patrick Kalmbach, Johannes Zerwas, Péter Babarczi, Andreas Blenk, Wolfgang

Kellerer, and Stefan Schmid. Empowering Self-Driving Networks. In Proceedings

47

Bibliography

of the Afternoon Workshop on Self-Driving Networks, SelfDN@SIGCOMM 2018,

Budapest, Hungary, August 24, 2018, pages 8–14, 2018.

[55] Muhammad Yaseen Khan, Abdul Qayoom, Muhammad Suffian Nizami, Muham-

mad Shoaib Siddiqui, Shaukat Wasi, and Syed Muhammad Khaliq-ur-Rahman

Raazi. Automated Prediction of Good Dictionary EXamples (GDEX): A Com-

prehensive Experiment with Distant Supervision, Machine Learning, and Word

Embedding-Based Deep Learning Techniques. Complexity, 2021, 2021.

[56] Ali Safari Khatouni, Francesca Soro, and Danilo Giordano. A machine learning

application for latency prediction in operational 4G networks. In 2019 IFIP/IEEE

Symposium on Integrated Network and Service Management (IM), pages 71–74.

IEEE, 2019.

[57] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait Dixit, and

Lawrence J Wobker. In-band network telemetry via programmable dataplanes. In

ACM SIGCOMM, 2015.

[58] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[59] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. Advances in neural information processing

systems, 25, 2012.

[60] Amund Kvalbein, Džiugas Baltrūnas, Kristian Evensen, Jie Xiang, Ahmed

Elmokashfi, and Simone Ferlin-Oliveira. The Nornet Edge Platform for Mobile

Broadband Measurements. Computer Networks, 61:88–101, 2014.

[61] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and

time series. The handbook of brain theory and neural networks, 3361(10):1995, 1995.

[62] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[63] Lei Lei, Yue Tan, Kan Zheng, Shiwen Liu, Kuan Zhang, and Xuemin Shen. Deep

reinforcement learning for autonomous internet of things: Model, applications and

challenges. IEEE Communications Surveys & Tutorials, 22(3):1722–1760, 2020.

48

Bibliography

[64] Bing Li, Shengjie Zhao, Rongqing Zhang, Qingjiang Shi, and Kai Yang. Anomaly

detection for cellular networks using big data analytics. IET Communications,

13(20):3351–3359, 2019.

[65] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng.

MAD-GAN: Multivariate anomaly detection for time series data with generative

adversarial networks. In International Conference on Artificial Neural Networks,

pages 703–716. Springer, 2019.

[66] Ji Li, Hui Gao, Tiejun Lv, and Yueming Lu. Deep reinforcement learning based

computation offloading and resource allocation for MEC. In 2018 IEEE Wireless

Communications and Networking Conference (WCNC), pages 1–6. IEEE, 2018.

[67] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan Yu. Flowradar: A better netflow

for data centers. In 13th {USENIX} Symposium on Networked Systems Design and

Implementation ({NSDI} 16), pages 311–324, 2016.

[68] Yuxi Li. Deep reinforcement learning: An overview. arXiv preprint

arXiv:1701.07274, 2017.

[69] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. The global k-means clustering

algorithm. Pattern recognition, 36(2):451–461, 2003.

[70] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-

forcement learning. arXiv preprint arXiv:1509.02971, 2015.

[71] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth

ieee international conference on data mining, pages 413–422. IEEE, 2008.

[72] Hongqiang Harry Liu, Xin Wu, Wei Zhou, Weiguo Chen, Tao Wang, Hui Xu, Lei

Zhou, Qing Ma, and Ming Zhang. Automatic Life Cycle Management of Net-

work Configurations. In Proceedings of the Afternoon Workshop on Self-Driving

Networks, SelfDN@SIGCOMM 2018, Budapest, Hungary, August 24, 2018, pages

29–35, 2018.

49

Bibliography

[73] Qiang Liu, Tao Han, Ning Zhang, and Ye Wang. DeepSlicing: Deep reinforcement

learning assisted resource allocation for network slicing. In GLOBECOM 2020-2020

IEEE Global Communications Conference, pages 1–6. IEEE, 2020.

[74] Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews:

data mining and knowledge discovery, 1(1):14–23, 2011.

[75] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

Multi-agent actor-critic for mixed cooperative-competitive environments. arXiv

preprint arXiv:1706.02275, 2017.

[76] Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’Neill, Nayyar Zaidi,

Bart Goethals, François Petitjean, and Geoffrey I Webb. Proximity forest: an

effective and scalable distance-based classifier for time series. Data Mining and

Knowledge Discovery, 33(3):607–635, 2019.

[77] Nguyen Cong Luong, Dinh Thai Hoang, Shimin Gong, Dusit Niyato, Ping Wang,

Ying-Chang Liang, and Dong In Kim. Applications of deep reinforcement learning

in communications and networking: A survey. IEEE Communications Surveys &

Tutorials, 21(4):3133–3174, 2019.

[78] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanabhan,

Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz Sunay. A P4-based

5G User Plane Function. In Proceedings of the ACM SIGCOMM Symposium on

SDN Research (SOSR), pages 162–168, 2021.

[79] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling inno-

vation in campus networks. ACM SIGCOMM Computer Communication Review,

38(2):69–74, 2008.

[80] Larry R Medsker and LC Jain. Recurrent neural networks. Design and Applications,

5:64–67, 2001.

[81] Jie Mei, Xianbin Wang, Kan Zheng, Gary Boudreau, Akram Bin Sediq, and Hatem

Abou-zeid. Intelligent Radio Access Network Slicing for Service Provisioning in

50

Bibliography

6G: A Hierarchical Deep Reinforcement Learning Approach. IEEE Transactions on

Communications, 2021.

[82] Oliver Michel and Eric Keller. SDN in wide-area networks: A survey. In 2017

Fourth International Conference on Software Defined Systems (SDS), pages 37–42.

IEEE, 2017.

[83] MIT. Network automation: Efficiency, resilience, and the path-

way to 5G. https://www.technologyreview.com/s/613533/

network-automation-efficiency-resilience-and-the-pathway-to-5g/,

April 2020. Accessed May 5, 2022.

[84] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-

thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous

methods for deep reinforcement learning. In International conference on machine

learning, pages 1928–1937. PMLR, 2016.

[85] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis

Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-

inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[86] Mohamed Moulay, Rafael Garcia Leiva, Vincenzo Mancuso, Pablo J Rojo Maroni,

and Antonio Fernandez Anta. TTrees: Automated Classification of Causes of Net-

work Anomalies with Little Data. In 2021 IEEE 22nd International Symposium on

a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pages 199–208.

IEEE, 2021.

[87] Yasar Sinan Nasir and Dongning Guo. Multi-agent deep reinforcement learning for

dynamic power allocation in wireless networks. IEEE Journal on Selected Areas in

Communications, 37(10):2239–2250, 2019.

[88] O-RAN Alliance. O-RAN: Towards an Open and Smart RAN, White Paper, Oct.

2018.

[89] Anand Padmanabha Iyer, Li Erran Li, Mosharaf Chowdhury, and Ion Stoica. Mit-

igating the latency-accuracy trade-off in mobile data analytics systems. In Pro-

51

https://www.technologyreview.com/s/613533/network-automation-efficiency-resilience-and-the-pathway-to-5g/
https://www.technologyreview.com/s/613533/network-automation-efficiency-resilience-and-the-pathway-to-5g/

Bibliography

ceedings of the 24th Annual International Conference on Mobile Computing and

Networking, pages 513–528, 2018.

[90] Tian Pan, Enge Song, Zizheng Bian, Xingchen Lin, Xiaoyu Peng, Jiao Zhang, Tao

Huang, Bin Liu, and Yunjie Liu. Int-path: Towards optimal path planning for

in-band network-wide telemetry. In IEEE INFOCOM 2019-IEEE Conference on

Computer Communications, pages 487–495. IEEE, 2019.

[91] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. Deep

learning for anomaly detection: A review. ACM Computing Surveys (CSUR),

54(2):1–38, 2021.

[92] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detec-

tor for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE

Robotics and Automation Letters, 3(3):1544–1551, 2018.

[93] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Ra-

jahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. The design

and implementation of open vswitch. In 12th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 15), pages 117–130, 2015.

[94] Yeh-Hong Ping and Po-Chiang Lin. Cell outage detection using deep convolutional

autoencoder in mobile communication networks. In 2020 Asia-Pacific Signal and In-

formation Processing Association Annual Summit and Conference (APSIPA ASC),

pages 1557–1560. IEEE, 2020.

[95] Scott Purdy. Encoding data for HTM systems. arXiv preprint arXiv:1602.05925,

2016.

[96] Martin L Puterman. Markov decision processes: discrete stochastic dynamic pro-

gramming. John Wiley & Sons, 2014.

[97] Darijo Raca, Ahmed H Zahran, Cormac J Sreenan, Rakesh K Sinha, Emir Hale-

povic, Rittwik Jana, Vijay Gopalakrishnan, Balagangadhar Bathula, and Matteo

Varvello. Empowering video players in cellular: Throughput prediction from ra-

dio network measurements. In Proceedings of the 10th ACM Multimedia Systems

Conference, pages 201–212, 2019.

52

Bibliography

[98] Yousra Regaya, Fodil Fadli, and Abbes Amira. Point-Denoise: Unsupervised outlier

detection for 3D point clouds enhancement. Multimedia Tools and Applications,

80(18):28161–28177, 2021.

[99] Yin Ren, Aihuang Guo, Chunlin Song, and Yidan Xing. Dynamic Resource Alloca-

tion Scheme and Deep Deterministic Policy Gradient-Based Mobile Edge Comput-

ing Slices System. IEEE Access, 2021.

[100] Ruben Ricart-Sanchez, Pedro Malagon, Antonio Matencio-Escolar, Jose M Al-

caraz Calero, and Qi Wang. Toward hardware-accelerated QoS-aware 5G network

slicing based on data plane programmability. Transactions on Emerging Telecom-

munications Technologies, 31(1):e3726, 2020.

[101] Mohammad Azmi Ridwan, Nurul Asyikin Mohamed Radzi, Fairuz Abdullah, and

YE Jalil. Applications of machine learning in networking: a survey of current issues

and future challenges. IEEE Access, 2021.

[102] Mahmoud Said Elsayed, Nhien-An Le-Khac, Soumyabrata Dev, and Anca Delia

Jurcut. Network anomaly detection using LSTM based autoencoder. In Proceedings

of the 16th ACM Symposium on QoS and Security for Wireless and Mobile Networks,

pages 37–45, 2020.

[103] Mayu Sakurada and Takehisa Yairi. Anomaly detection using autoencoders with

nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd work-

shop on machine learning for sensory data analysis, pages 4–11, 2014.

[104] Jason Sanders and Edward Kandrot. CUDA by example: an introduction to general-

purpose GPU programming. Addison-Wesley Professional, 2010.

[105] Robert E Schapire and Yoav Freund. Boosting: Foundations and algorithms. Ky-

bernetes, 2013.

[106] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

Trust region policy optimization. In International conference on machine learning,

pages 1889–1897. PMLR, 2015.

[107] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

53

Bibliography

[108] Vincenzo Sciancalepore, Faqir Zarrar Yousaf, and Xavier Costa-Perez. z-TORCH:

An automated NFV orchestration and monitoring solution. IEEE Transactions on

Network and Service Management, 15(4):1292–1306, 2018.

[109] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster, Nick

McKeown, and Jennifer Rexford. Pisces: A programmable, protocol-independent

software switch. In Proceedings of the 2016 ACM SIGCOMM Conference, pages

525–538, 2016.

[110] Lloyd S Shapley. Stochastic games. Proceedings of the national academy of sciences,

39(10):1095–1100, 1953.

[111] Changyang She, Chengjian Sun, Zhouyou Gu, Yonghui Li, Chenyang Yang, H Vin-

cent Poor, and Branka Vucetic. A Tutorial on Ultra-reliable and low-latency com-

munications in 6G: integrating domain knowledge into deep learning. Proceedings

of the IEEE, 109(3):204–246, 2021.

[112] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin

Riedmiller. Deterministic policy gradient algorithms. In International conference

on machine learning, pages 387–395. PMLR, 2014.

[113] AG Spilling, AR Nix, MA Beach, and TJ Harrold. Self-organisation in future mobile

communications. Electronics & Communication Engineering Journal, 12(3):133–

147, 2000.

[114] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust

anomaly detection for multivariate time series through stochastic recurrent neural

network. In Proceedings of the 25th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, pages 2828–2837, 2019.

[115] Tobias Sundqvist, Monowar Bhuyan, and Erik Elmroth. Uncovering latency anoma-

lies in 5G RAN-A combination learner approach. In 2022 14th International Con-

ference on COMmunication Systems & NETworkS (COMSNETS), pages 621–629.

IEEE, 2022.

[116] Yu-Wei Eric Sung, Xiaozheng Tie, Starsky H. Y. Wong, and Hongyi Zeng. Robotron:

Top-down Network Management at Facebook Scale. In Proceedings of the ACM

54

Bibliography

SIGCOMM 2016 Conference, Florianopolis, Brazil, August 22-26, 2016, pages 426–

439, 2016.

[117] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[118] Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy

gradient methods for reinforcement learning with function approximation. Advances

in neural information processing systems, 12, 1999.

[119] Tarik Taleb, Adlen Ksentini, and Bruno Sericola. On service resilience in cloud-

native 5G mobile systems. IEEE Journal on Selected Areas in Communications,

34(3):483–496, 2016.

[120] Lizhuang Tan, Wei Su, Wei Zhang, Huiling Shi, Jingying Miao, and Pilar

Manzanares-Lopez. A packet loss monitoring system for in-band network telemetry:

Detection, localization, diagnosis and recovery. IEEE Transactions on Network and

Service Management, 18(4):4151–4168, 2021.

[121] Fengxiao Tang, Yuichi Kawamoto, Nei Kato, and Jiajia Liu. Future intelligent and

secure vehicular network toward 6G: Machine-learning approaches. Proceedings of

the IEEE, 108(2):292–307, 2019.

[122] Gioacchino Tangari, Daphne Tuncer, Marinos Charalambides, Yuanshunle Qi, and

George Pavlou. Self-adaptive decentralized monitoring in software-defined networks.

IEEE Transactions on Network and Service Management, 15(4):1277–1291, 2018.

[123] Muhammad Usama, Junaid Qadir, Aunn Raza, Hunain Arif, Kok-Lim Alvin Yau,

Yehia Elkhatib, Amir Hussain, and Ala Al-Fuqaha. Unsupervised machine learning

for networking: Techniques, applications and research challenges. IEEE access,

7:65579–65615, 2019.

[124] Filippo Vannella, Grigorios Iakovidis, Ezeddin Al Hakim, Erik Aumayr, and Saman

Feghhi. Remote Electrical Tilt Optimization via Safe Reinforcement Learning. In

2021 IEEE Wireless Communications and Networking Conference (WCNC), pages

1–7. IEEE, 2021.

55

Bibliography

[125] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.

Extracting and composing robust features with denoising autoencoders. In Proceed-

ings of the 25th international conference on Machine learning, pages 1096–1103,

2008.

[126] Jing Wang, Jian Tang, Zhiyuan Xu, Yanzhi Wang, Guoliang Xue, Xing Zhang, and

Dejun Yang. Spatiotemporal modeling and prediction in cellular networks: A big

data enabled deep learning approach. In IEEE INFOCOM 2017-IEEE Conference

on Computer Communications, pages 1–9. IEEE, 2017.

[127] Lipo Wang. Support vector machines: theory and applications, volume 177. Springer

Science & Business Media, 2005.

[128] Mea Wang, Baochun Li, and Zongpeng Li. sFlow: Towards resource-efficient and

agile service federation in service overlay networks. In 24th International Conference

on Distributed Computing Systems, 2004. Proceedings., pages 628–635. IEEE, 2004.

[129] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando

Freitas. Dueling network architectures for deep reinforcement learning. In Interna-

tional conference on machine learning, pages 1995–2003. PMLR, 2016.

[130] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning,

8(3):279–292, 1992.

[131] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist

reinforcement learning. Machine learning, 8(3):229–256, 1992.

[132] Q Wu, J Strassner, A Farrel, and L Zhang. Network telemetry and big data analysis.

Network Working Group Internet-Draft, 2016.

[133] Zhenjie Yang, Yong Cui, Baochun Li, Yadong Liu, and Yi Xu. Software-defined wide

area network (SD-WAN): Architecture, advances and opportunities. In 2019 28th

International Conference on Computer Communication and Networks (ICCCN),

pages 1–9. IEEE, 2019.

[134] Minlan Yu. Network telemetry: towards a top-down approach. ACM SIGCOMM

Computer Communication Review, 49(1):11–17, 2019.

56

Bibliography

[135] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile

and wireless networking: A survey. IEEE Communications surveys & tutorials,

21(3):2224–2287, 2019.

[136] Hao Zhu, Yang Cao, Wei Wang, Tao Jiang, and Shi Jin. Deep reinforcement learning

for mobile edge caching: Review, new features, and open issues. IEEE Network,

32(6):50–57, 2018.

[137] Yibo Zhu, Nanxi Kang, Jiaxin Cao, Albert Greenberg, Guohan Lu, Ratul Mahajan,

Dave Maltz, Lihua Yuan, Ming Zhang, Ben Y Zhao, et al. Packet-level telemetry in

large datacenter networks. In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, pages 479–491, 2015.

[138] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki

Cho, and Haifeng Chen. Deep autoencoding gaussian mixture model for unsuper-

vised anomaly detection. In International conference on learning representations,

2018.

57

Part II: Research Papers

Article I

Ahmed, A. H., Hicks, S., Riegler, M. A., and Elmokashfi, A. (2021). Predicting High
Delays in Mobile Broadband Networks. IEEE Access, 9, 168999-169013.
DOI: https://doi.org/10.1109/ACCESS.2021.3138695.

https://doi.org/10.1109/ACCESS.2021.3138695

Received December 15, 2021, accepted December 23, 2021, date of publication December 24, 2021,
date of current version December 31, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3138695

Predicting High Delays in Mobile
Broadband Networks
AZZA H. AHMED 1,2, (Member, IEEE), STEVEN HICKS1,2, (Member, IEEE),
MICHAEL ALEXANDER RIEGLER 1, AND AHMED ELMOKASHFI 1, (Member, IEEE)
1SimulaMet—Simula Metropolitan Center for Digital Engineering, 1325 Oslo, Norway
2Department of Computer Science, OsloMet—Oslo Metropolitan University, 0167 Oslo, Norway

Corresponding author: Azza H. Ahmed (azza@simula.no)

ABSTRACT The number of applications that run over mobile networks, expecting bounded end-to-end
delay, is increasing steadily. However, the stochastic and shared nature of the wireless medium makes
providing such guarantees challenging. Using several network interfaces simultaneously can help address
fluctuating delays, provided that transport protocols can switch between them in a timely manner. Today’s
protocols are mostly closed-loop and thus require at least one round trip before reacting to increased
delay. This paper examines whether jumps in round trip times (RTTs) have a pattern that can be predicted
beforehand. Using per second RTT measurements from hundreds of probes in two Long Term Evolu-
tion (LTE) cellular networks, we train an ensemble of classifiers to detect increases in delay. We construct
a parsimonious explainable model that provides an accuracy of 80% and does not appear to be specific
to a particular mobile operator. Further, we examine whether our model can be extended to 5G using a
small dataset with extra 5G metadata, resulting in an accuracy of 88%. Our model indicates that RTTs are
long-range correlated and shows that radio measurements of channel occupancy are accurate predictors of
the onset of high delays. These results suggest that it is feasible to build an open-loop control system for
multiplexing among several interfaces to proactively bound delays.

INDEX TERMS Delay, prediction, machine learning, LTE, 5G.

I. INTRODUCTION
Guaranteeing low and stable end-to-end delay over mobile
networks is one of the key motivations for 5G. Ultra-reliable
low-latency communication is one of three use cases 5G is
envisioned to cater for [1]. Reliable latency is important for
supporting interactive applications such as hepatic control,
virtual and augmented reality, and critical applications such
as smart grid metering and public safety communication.

Delays can increase for a number of reasons, including
interference, handover, and congestion both in the radio and
beyond [2], [3]. New error correction mechanisms and novel
radio access strategies, such as the flexible numerology intro-
duced by 5G new radio [4], may help drive delay down [5].
However, addressing congestion and handover remains chal-
lenging because of the stochastic, shared and time-slotted
nature of the wireless medium.

Leveraging the availability of several radios per end
device has also emerged as a potential approach to bound

The associate editor coordinating the review of this manuscript and

approving it for publication was Ehab Elsayed Elattar .

performance unpredictability. Previous studies have shown
that network availability can be boosted to five nines by
connecting to two mobile operators simultaneously and the
throughput can be enhanced markedly [6], [7]. Several mul-
tipath transport protocols, such as Multipath Transmission
Control Protocol (MP-TCP) and QUIC multipath, are stan-
dardized to support the simultaneous use of multiple links [8],
[9]. These protocols use a scheduler that monitors the state
of each link in use before deciding which link to use next.
Similar to TCP, performance monitoring is essentially a
closed-loop that requires at least a single round trip, but often
several, before taking a qualified decision. Unfortunately, this
waiting time can be too long to meet the expectations of
delay-sensitive applications.

To address these limitations, we ask the simple question of
RTTs over mobile networks can be predicted by end devices.
We are not interested in the exact value of the RTT, but
rather whether it falls below or above a certain threshold.
Furthermore, the prediction should be based only on mea-
surements and metadata that are available to end devices, like
for example, signal strength. Accurate predictions can help

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 168999

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

TABLE 1. List of abbreviations.

transport protocols to short-circuit the closed control loop by
making local decisions instead of waiting for at least one RTT.

We leveraged end-to-endmeasurements andmetadata from
a large number of stationary probes connected to two mobile
operators over LTE. Then, we trained a number of machine
learning classifiers to verify whether delays could be reliably
predicted. We focused on stationary measurements because it
was the simplest scenario and thus succeeding in predicting
stationary delays is the first step towards scenarios with com-
plex mobility. Furthermore, many use cases with stringent
delay requirements are associated with low to no mobility
(e.g., smart meters). Interestingly, we found that a binary
ensemble classifier could accurately predict low and high
delay in 80% of the cases. In fact, the classifier also predicted
correctly 75% of the worst 10% of the RTTs. More impor-
tantly, the model is interpretable and transferable to other
network operators and requires minimal retraining to remain
effective over an extended period. Moreover, we tested our
classification model on a small 5G dataset of RTT measure-
ments and extra metadata. The model achieved an accuracy
of 88% for classifying the delays. Our findings can be readily
used to improve the performance of multipath protocols when
using several wireless links for bounding delays.

The rest of the paper is organized as follows: We present
our measurement data in Sec. II. We then discuss our
approach for predicting delays in Sec. III and present the
prediction results in Sec. IV. Sections V and VI dig deeper
into failed predictions and examine the prediction accuracy
over time. In Sec. VII, we investigate the performance of
our model on 5G data. We review related work in Sec. VIII.
The main findings are discussed in Sec. IX before concluding
in Sec. X

II. MEASUREMENT DATA
In this section, we describe our measurement setup, dataset,
and pre-processing steps.

We studied RTT measurements from a set of geograph-
ically spread stationary probes. These probes are part of

FIGURE 1. Measurement node. The red box encloses the single board
computer. The box also includes a smart power socket that can be
rebooted via SMS.

the NorNet Edge (NNE) platform, which is a country-wide
setup for measuring commercial mobile broadband networks
in Norway. The probe is a single-board computer that runs
Linux and connects to at least two mobile operators using
commercial off-the-shelf user equipment (UE) and subscrip-
tions. More specifically, we use the APU2 platform from PC
Engines (see Figure 1).1 Our board is equipped with a quad
core CPU, 4GB RAM and two miniPCI slots. To connect
to commercial mobile networks, we use the Sierra Wireless
AirPrime MC7455 miniPCI modem, which supports LTE
CAT 6 (LTE-advanced).2 The modem uses external antenna,
which are visible in Figure 1. To enhance the availability
of the nodes, we attach them to a smart power socket that
can be power-cycled remotely via SMS. Our probes conduct
end-to-end measurements to a set of well provisioned servers
that we control, these include delay, packet loss, and speed.
Figure 2 illustrates the measurement setup. An NNE node
connects to the Internet via commercial mobile subscriptions
and performs end-to-end measurements to the NNE backend.

In this study, we consider measurements from the two
largest mobile operators in Norway, which we refer to asOp1
and Op2 in the sequel. The probes measure RTTs by send-
ing a 20-bytes User Datagram protocol (UDP) packet every
second, over all available connections, to a well-provisioned
server that echoes it back. We focused on the RTT mea-
surements collected over LTE during September and October
2018. TheOp1 dataset includes more than 44.96 million RTT
data points from 79 probes, while the Op2 dataset includes
approximately 14.47 million data points from 77 probes. The

1https://www.pcengines.ch/apu2.htm
2https://www.sierrawireless.com/iot-solutions/products/mc7455/

169000 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

difference between the two datasets stems from the fact that
Op2 connections were on 3G for a non-trivial duration, and
this data had to be filtered out. At the time of the study, Op2
did not implement handover between radio access technolo-
gies while a UE was actively sending data, i.e. data sent by a
UE over 3Gwould not be handed over to 4G. Therefore, many
of the connections to Op2 were on 3G for an extended period
of time. Besides filtering out these periods, we removed
all instances where a probe underwent maintenance or the
NNE backend had issues. The NNE backend is connected to
the Internet via a well provisioned link through a research
and educational network. However, to avoid including times
where the measured RTTs were influenced by congestion in
the research and educational network, we filtered all mea-
surements where a large fraction of probes, across operators,
registered larger than usual RTTs.

In addition to the active measurements, the probes collect
connection metadata. These include radio and connectivity
parameters, which are listed below.

• Received signal strength indicator (RSSI) is a mea-
sure of the power received by the UE, including both the
signal and noise.

• Reference signal received power (RSRP) is a measure
of the power in the LTE reference signal and is averaged
over the entire bandwidth. RSRP is a more accurate
estimate of the received useful power.

• Reference signal received quality (RSRQ) is a mea-
sure of the quality of the received signal. A low RSRQ
often coincides with a loaded cell.

• Radio access technology (RAT) indicates mobile gen-
eration in use, that is, 2G, 3G, and 4G.

The metadata is collected every minute, as well as when-
ever there is a change.We associated every RTTmeasurement
with the closest past metadata value. Next, we removed all
RTT measurements without the corresponding metadata. The
removed fractions are 0.2% and 0.3% for Op1 and Op2,
respectively. Finally, we checked the sanity of the metadata
values and removed all RTT measurements that were associ-
ated with metadata values outside the correct value ranges,
that is, RSRP (−44dBm to −140dBm), RSRQ (−3dB to
−20dB), and RSSI (−6dBm to −100dBm).

III. PREDICTING ROUND TRIP DELAY
This section takes a closer look at our dataset and approaches
to predict delays.

A. RTT MEASUREMENTS
Figure 3 shows the distribution of RTTs for Op1 and Op2.
There were no clear differences between the two operators for
the bulk of the initial part of the distributions. Approximately
60% of the RTTs were within 50ms for both operators. The
picture, however, started to change as we look at the worst
20% RTTs with Op1 performing worse than Op2.

We are interested in investigating whether high delays, the
top 10%, can be predicted based on historical RTT values

FIGURE 2. Measurement setup [10].

and available high-level metadata about connection quality.
We intentionally avoid using cross-layer information such as
MAC layer scheduling decisions and physical layer reports.
This is because leveraging these in practice would require
complicated APIs that can communicate with the underly-
ing chipset, for example, the approach that tools such as
MobileInsight use [11]. Hence, our problem is a classical
forecasting problem, which may suggest that available time
series analysis techniques such as ARIMA can be a good
fit [12]. However, these methods base their prediction chiefly
on past values and patterns in the time series and do not
lend themselves easily to regularization, that is, adjusting
forecasting by incorporating side information about relevant
factors such as signal quality. Thus, machine learning (ML)
appears to be a viable alternative.

Figure 3 shows that attempting to predict high delays
means that we need to handle a heavily imbalanced dataset.
Specifically, we categorized the delays into low and high
using one threshold per operator, which is 80ms and 60ms
for Op1 and Op2, respectively. These thresholds are meant
to designate the top 10% delays as high, that is, our classes
have a relative ratio 9:1 by design. To prepare a balanced
dataset, we investigated both oversampling and undersam-
pling. We use the synthetic minority oversampling technique
(SMOTE), which applies a nearest neighbor algorithm to gen-
erate synthetic data for the minority class [13]. For the under-
sampling, we used the NearMiss algorithm, which removes
samples from the majority class. It removes values that are
close to the minority class to increase the spacing between the
two classes and avoid information loss [14]. Fitting a random
forest classifier, a supervised ensemble learning method [15],
and using both SMOTE and NearMiss to balance our data,
yields a comparable accuracy of ≈ 79%. We decided to
proceed with undersampling because it does not require the
use of synthetic data.

B. CLASSIFICATION ALGORITHMS
As explained above, our problem is essentially a classification
and prediction problem. To this end, we compare the perfor-
mance of four supervised classification algorithms, which are
listed as follows:

1) LOGISTIC REGRESSION (LR)
An interpretable binary classifier that uses a logistic function
to model the binary variable. However, it usually does not
perform well when the feature space is large [15].

VOLUME 9, 2021 169001

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 3. Distribution for RTT values for Op1 and Op2.

2) RANDOM FOREST (RF)
An ensemble-based learning algorithm that uses many deci-
sion trees to perform either classification or regression [15].
For classification, each decision tree makes an independent
prediction, which is then counted to produce the final output.
RF is quite robust, but offers less interpretability than LR.

3) LightGBM
A gradient-boosting framework is based on decision tree
algorithms [16]. Gradient boosting algorithms combine itera-
tively a number of weak learners into a single strong learner.
Similar to RF, LightGBM is less interpretable than LR.

4) ENSEMBLE
This approach combines the logistic regression, LightGBM,
and random forest classifiers into a single model [17]. Each
algorithm is trained separately. Then, a gradient-boosted deci-
sion tree is trained, based on the predictions from each algo-
rithm along with the input data. This allows for weighting the
contribution of each classifier, resulting in a combination that
is an improvement over the individual classifiers.

C. RELEVANT FEATURES
We used four groups of features to train the classifiers. The
guiding principle in picking these features is to limit our-
selves to features that can be readily available to applications
and minimize dependencies on cross-layer features. The four
groups comprise radio reception quality, diurnal, spatial, and
time-series effects.

1) RADIO RECEPTION FEATURES
These involve RSSI, RSRP and RSRQ.

2) DIURNAL EFFECTS FEATURES
The RTT exhibits a certain periodicity in both daily and
weekly patterns. To model these effects, we assign each RTT
measurement to the respective hour of the day and day of the
week.

FIGURE 4. Temporal auto-correlation for RTT at time lag = 0,5,10,..,30
seconds.

3) SPATIAL FEATURES
To account for the location of the probe (e.g., urban vs. rural),
we identified the coordinates of each probe and mapped
it to a (1km×1km) geographical unit that is provided by
the state [18]. We then found the population that resides
in each identified geographical unit. Based on the distribu-
tion of the population per geographic unit, we defined three
categories for this feature: (i) low (< 10,000), (ii) medium
(10,000-15,000) and (iii) high (> 15,000). These thresholds
were determined based on the distribution of the country’s
population.

4) TIME SERIES FEATURES
We examined whether the RTT time series exhibited autocor-
relation and long-range dependence [12]. Figure 4 shows the
autocorrelation function (ACF) for the RTT time series from a
sample connection at different lags in seconds. We recorded a
non-negligible autocorrelation that spreads over several lags.
The ACF became weaker for higher lags. While this may
be expected because the dataset is dominated by low RTTs,
it also indicates that high RTTs may have a serial pattern
to them. Therefore, we investigated whether previous RTTs
can help predict upcoming delays. To determine how long
we need to look back at time, we evaluated the correlation
between the current RTT and RTTs from the past 3, 5, 10, 15,
and 30s. Limiting ourselves to the past five seconds yielded
a reasonable accuracy.

D. APPROACH
We trained four classifiers, one per each of the above algo-
rithms, using one week worth of data from Op1. We applied
these algorithms using the implementations provided by
the Python library scikit-learn [19] and LightGBM [16].
We applied RF using a maximum of 600 estimators and
adjusted the weights proportionally to the class size. We used
K-fold (k= 5) cross-validation for the hyperparameters selec-
tion. Further, as for LightGBM, we used the gradient boosted

169002 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

TABLE 2. Values of accuracy and MCC for different classifiers.

decision tree algorithm with a learning rate of 0.01. Owing to
the large dataset size, we chose a larger learning rate to reduce
the required number of iterations.

We used the first week of September for training and
the second week for validation and evaluation. Furthermore,
we only focused on Op1 when fitting the model and used the
Op2 dataset to check whether the model generalizes to other
operators.

IV. PREDICTION PERFORMANCE
Wenow proceed to evaluate the performance of the aforemen-
tioned classification algorithms. To this end, we investigate
their general accuracy, as well as their efficacy in predict-
ing high delays and model transferability to other network
operators.

A. PREDICTION ACCURACY
We applied a number of metrics to compare the four classi-
fiers in use, which we summarize next.
• Accuracy.Ratio of correctly classified samples.We also
present the accuracy in the form of a confusion matrix.

• Receiver operating characteristic (ROC) curve.
A graphical measure of the separability of a binary
classifier as we vary the discrimination threshold.

• Precision-Recall curve. The plot describes the trade-off
between precision and recall for different thresholds.
A high area under the curve represents both a high
recall and high precision. This is more appropriate for
imbalanced datasets.

• Matthews correlation coefficient (MCC). A measure
of the correlation between the actual and predicted
samples [20]. Unlike other metrics, MCC is symmetric
because it assigns all classes equal importance.

In our evaluation, the true positives (TPs) are the cor-
rectly classified high-delay samples. True negatives (TNs) are
the correctly classified low-delay samples. The false posi-
tives (FPs) are the incorrectly classified low-delay samples.
Finally, false negatives (FNs) are the samples incorrectly
classified as high-delay.

Table 2 presents the prediction accuracy and MCC of the
four classification algorithms. The ensemble, random forest,
and lightGBM outperformed logistic regression by a clear
margin. The MCC confirms that the results of the ensem-
ble and random forest correlate well with the actual classes
across the board. The ensemble model achieved a very good
accuracy compared to the closest related work by khatouni et.
al [21], which achieved an accuracy of 67% when applying
DT using the same features defined by the authors.We believe

that the lower accuracy of [21] is due to having neglected the
effect of historical data in their model.

The ROC curves and the respective area under the
curve (AUC) values in Figure 6 further confirm the above
observations for a range of thresholds. The ensemble clas-
sifier outperformed all the other three classifiers, with an
AUC value of 0.88. The random forest classifier had an AUC
of 0.87. The corresponding values for the lightGBM and
logistic regression are 0.84 and 0.69, respectively. Moreover,
as expected the precision-recall curves in Figure 7 show
similar results.

The confusion matrices for the four classifiers (see
Figure 5) further confirm that the ensemble and random
forest predict both the TPs and TNswith reasonable accuracy,
although the performance is marginally worse when predict-
ing high delays. The ensemble classifier correctly predicted
75% of the high-delay samples. Although this is a relatively
good accuracy, we need to investigate whether the model can
accurately predict high jumps in delay, as these have the worst
impact on end-to-end performance.

B. FEATURES IMPORTANCE
To gain more insight into our model, we identify the features
that contribute the most to the decision-making of the model.
Figure 8 presents the top 10 features, along with their impor-
tance. Historical RTTs, taking the first five spots, play the
most important role. Additionally, the network features RSSI,
RSRP, and RSRQ contribute to discriminating features in the
model. We evaluated our model when relying on historical
RTTs only; the ARIMAmodel used a lag order of 5, resulting
in 63% accuracy. Therefore, a model that uses only historical
RTT data (e.g., moving average, exponential smoothing, and
ARIMA [12]) does not work well. Our model also exhibits
some spatial dependencies through the population feature
based on the probe location.

C. MODEL ACCURACY PER PROBE
We now break down our analysis of accuracy per probe,
which should provide a more fine-grained idea about the
failure of the model. Figure 9(a) depicts the fraction of FNs
per each probe, which is the fraction of high delays that
are incorrectly predicted. We observed marked differences
between the probes. While a sizable majority had an FN
rate below 0.1, eight probes had a rate over 0.3. How-
ever, there are fewer variations in FPs across probes (see
Figure 9(b)), with accuracy below 0.2 for almost all probes.
To gain insights into the high variability in the FN rate,
we compared the distribution of the number of consecutive
seconds with high delays for the two probes with the highest
(probe 8) and lowest (probe 12) FN rates. This comparison
is motivated by the fact that past RTT values are the most
central features. The results show that the node with the
lowest FN rate suffers longer periods with high delays as
opposed to the node with the highest FN rate. Here, 90% of
high-delay episodes last two seconds or shorter. Furthermore,
probes with higher FN rates are generally characterized by

VOLUME 9, 2021 169003

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 5. Confusion matrix for four classifiers.

FIGURE 6. Comparative evaluation of four classifiers based on ROC curve and AUC.

lower delays and less variations in delay, whereas those with
medium and lower FN rates suffer higher delays. Accord-
ingly, the classifier fails to predict on-off hikes in delay
but performs well for connections with a challenging delay
profile.

D. MODEL TRANSFERABILITY
Many machine learning models are limited to a specific con-
text, which necessitates building new models as the context
changes. Hence, an important question is whether our clas-
sifier is transferable to other network operators. To verify
this, the model was used to predict delays for probes from

the second operator Op2 in our dataset, while training it on
data from Op1. Note that all the results above are for Op1.
A blind application results in a poor accuracy of 63%. The
main reason for the performance degradation is that the two
operators have different delay profiles (see Figure 3). Recall
that Op2 exhibits lower delays with 90% of RTTs lower
than 60ms, while the corresponding number for Op1 is 80ms.
Accordingly, when we changed the threshold that separates
low and high delay for Op2 to 60ms, the accuracy of the
model increased to 81%, which is similar to the Op1’s case.
Figure 10 shows the prediction recall and ROC curves for
Op2, which closely match the corresponding plots for Op1.

169004 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 7. Comparative evaluation of four classifiers based on Precision-Recall curve and the average precision.

FIGURE 8. Top 10 important features using random forest.

This shows that the model is transferable once it is adjusted
to the profile of the new operator.

Takeaways. A simple machine learning classifier can
predict fairly well whether future delays will be over or
below a specific threshold. Our ensemble learning classifier
is accurate in 80% of the cases and is able to predict 75% of
high-delay instances. Recent RTTs, signal quality, and num-
ber of users are the most important discriminating features.
Furthermore, the accuracy of the model varies across probes

and is a function of the delay profile of the probe. The model
is more accurate for probes with high-delay episodes that last
longer. Finally, the model is transferable to other contexts that
require only minor adjustments.

V. DISSECTING AND INTERPRETING THE
MODEL PERFORMANCE
Having seen that high delays can be predicted with a reason-
able accuracy, we dig deeper into the misclassified instances.
Overall, our model misclassified 20% of the tested samples.
These include both the FPs and FNs, which we investigate
next. More specifically, we examine the high-importance
features of the misclassified samples in comparison with the
correctly predicted ones.

A. FALSE NEGATIVES
Recall that by FNs we refer to high delays that are incorrectly
predicted as low delays. This is approximately 25% of the
total high delays. Considering that historical RTT values are
the most important features in our model, we compared the
distribution of the previous 1-second and 2-second RTTs for
the FNs with those for the TPs. The left panel in Figure 11(a)
illustrates that the previous second RTT is evidently higher

VOLUME 9, 2021 169005

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 9. Distribution of false negatives and false positives per probe.

FIGURE 10. Prediction-recall curve and ROC curve for Op2.

for the TP case. The previous second RTT was in the low
category for 90% of FNs, as opposed to 70% of TPs. The right
panel shows that, unlike TPs, FNs are often followed by high
RTTs. We also compared the distribution of radio metadata
(i.e., RSSI, RSRP, and RSRQ) for FNs and TPs, which are
almost identical, indicating that differences in these features
do not offer further details to explain FNs.3

3We do not include the respective figures due to space limitations.

Recall from the previous section that FNs appear to
increase as the duration of high-delay episodes decreases.
To confirm this, we plotted the accuracy as a function of the
delay episode duration, as shown in Figure 12. The results
indeed confirm the earlier observations, our model predicted
only 57% of the high episodes of length one, i.e., spikes
and 63% of length two episodes. The accuracy continues to
improve as the duration of the high-delay episodes increases.
Accordingly, FNs have two characteristics: 1) they often

169006 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

appear after periods with low delay. That is, an FN sample
may be the first sample with a high delay, and 2) they belong
to delay episodes that are short.

Interestingly, our model still succeeds in predicting a con-
siderable fraction of delay episodes of lengths one and two,
which begs the question of what features help discriminate
these short delays. Looking at all features, we found that the
RSRQ is the most important discriminator.

Figure 13(a) compares the RSRQ distribution for the cases
of length one. The TPs were evidently associated with worse
RSRQ. We refer to RSRQ values as good or bad according to
LTE RSRQ mapping table defined by 3GPP in [22]. We also
analyzed high-delay episodes that lasted for two seconds.
Here, we have four cases: 1) both delay samples are pre-
dicted correctly as high and they contribute to the true pos-
itives, 2) both delay samples are predicted incorrectly as low,
3) the first sample is predicted correctly and the other one
is not and 4) lastly the second sample is predicted correctly,
and the first one is not. For the first case, both samples
have relatively low RSRQ values (see Figure 13(b)), which
drives the model to predict them correctly as high. In the
second case, both samples have a good or fair RSRQ value
(see Figure 13(c)). For case three, both RSRQ values are
relatively low, which explains why the first sample is pre-
dicted correctly (see Figure 13(d)). Finally, for the fourth
case, the RSRQ values are higher for the first sample than
for the second one (see Figure 13(e)). These results indicate
that RSRQ reliably contributes to flag short delay episodes.
A worse RSRQ is indicative of a congested cell. To confirm
this, we break the correctly predicted high delays that belong
to short episodes of lengths one and two, down to per hour of
day. Figure 14 shows this breakdown, where we can clearly
see that such delays tend to occur more at peak hours.

B. FALSE POSITIVES
Similarly, we investigated the FPs by examining the distribu-
tions of historical RTTs. The plots in Figure 11(b) compare
the past second and two seconds RTT for FPs and TNs.
We recorded a qualitative difference between FPs and TNs,
where a nontrivial fraction of FPs appears to follow high-
delay instances, that is, the previous second had a high delay.
Looking at the RTTs in the seconds that immediately follow
an FP, reveal that these seconds are often associated with low
delays.

Takeaways. Short-delay episodes are difficult to predict.
RSRQ helps identify short episodes that are likely to be
caused by congested cells. These amounts to 57% of the
episodes of length one. More frequent measurements, that
is, at a frequency less than 1s, can help in predicting false
negatives. In addition, the model struggles to demarcate the
ends of some delay episodes, resulting in false positives.

VI. MODEL STABILITY AND NEED FOR RETRAINING
As machine learning-based models are trained on data col-
lected from the past, they often degrade over time owing
to external changes in the environment. Model degradation

is often rectified through a system for retraining, that is,
keeping the model up to date through training on the data
collected during production. In this section, we investigate
whether our model remains stable over time and how to
rectify performance degradation, if any. Figure 15 shows the
performance of an ensemble model trained on the first week
of September 2018, which was then tested on data for the
following sevenweeks, which is the second half of September
and the whole of October. The graph shows a clear trend
of performance degradation, where the accuracy drops from
73% to 68%. Hence, it is necessary to retrain the model.

To gain insight into how a model may degrade over a small
period of time, we monitored the performance of a model
trained on the first week of September 2018 and deployed
over the following seven weeks. Figure 15 shows the results
for a model that was not retrained, a model trained every
week, and a model trained every day. Each retraining ses-
sion used data collected from the previous training session.
We observe that a model that does not perform any retrain-
ing exhibits a downward trend in performance. Retraining
every day shows an improvement over not retraining but
still has a downward slope. We believe this is because the
model does not have sufficient training data to accurately
represent day-to-day changes in mobile delay. Retraining
every week shows an improvement over retraining every day,
and now shows a slight upward trend in performance. The
experiments show that retraining a model helps stabilize the
performance but may still change from day to day due to
unforeseen circumstances. An example of such a change can
be seen on October 15th, where the network had a surge in
dropped packets and high delays due to the failure of a central
component.

Takeaways. The model performance degrades as time
progresses. As expected, retraining can help address this.
However, the retraining cycle must be adjusted to include all
important patterns in the underlying dataset. We found that a
modest weekly cycle performed fairly well.

VII. ARE HIGH DELAYS ALSO PREDICTABLE IN 5G?
In this section, we examine whether our ensemble classifier
can be extended to 5G.

A. DATASET
We collected RTT measurements, following a procedure
similar to that for 4G, using three measurement nodes that
connect to the newly launched sub-6GHz Non-Stand Alone
(NSA) 5G [23] service by Op1. These nodes connect to the
5G network using Huawei CPE Pro 2 [24] and commer-
cial subscriptions. Similar to the 4G nodes, the three nodes
were placed indoors in an urban environment. In addition
to active measurements, the probes collect the connection
metadata. The collected metadata involves the same 4G
metadata described in Section II and a set of extra meta-
data. The additional metadata include the modulation coding
schemes (MCS) in use (i.e., the number of bits that can be
sent in a resource block for both uplink and downlink [25]),

VOLUME 9, 2021 169007

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 11. The distributions of historical delay features (previous 1 second RTT and previous 2 seconds RTT values) for the false
negatives, true positives, false positives and true negatives.

FIGURE 12. Accuracy of the high delay episodes grouped by how long the
episode lasts.

the measured power on the physical uplink shared channel,
the physical uplink control channel, and the power of the
sounding reference signal. The MCS captures the quality
of the downlink, whereas the three power measures capture

the quality of the uplink. Measurements were conducted in
February 2020. After merging the RTT measurements with
metadata, we obtained a dataset containing 838,796 samples.

Figure 16 shows the RTT distribution for the 5G data Op1.
The top 10% RTTs, categorized as high delays, correspond
to RTTs exceeding 28ms. This is a major improvement over
4G. Note that the 5G NSA still uses the 4G core, albeit
with a flattened architecture. However, it deploys a different
air interface, that is, 5G New Radio. The measured network
delivers 5G NSA over a number of frequencies, but only
focuses on the commonly used 3.5 GHz frequency. The flat-
tened architecture and differences in the air interface explain
most of the savings in RTT [5].

B. PREDICTION ACCURACY
To verify whether high delays can be predicted equally well
on 5G as in 4G, we trained an ensemble classifier with three
weeks 5G data and tested it using a one-week dataset. Further,
we conducted two experiments: one using the same features
as for the LTE in Sec III and another using the extra metadata
as features. The first experiment resulted in an accuracy
of 83%, while the second experiment achieved an accuracy

169008 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 13. The distributions of RSRQ of high delay episodes of lengths one and two.

FIGURE 14. The diurnal pattern of short high delay episodes.

of 88%. Figure 17 shows the performance of the second
experiment. The model had high precision and an AUC close
to 1. From the confusion matrix in Figure 17(c), the model
can successfully predict approximately 85% of the high-delay
instances.

C. FEATURES IMPORTANCE
Figure 18 presents the top 15 features along with their impor-
tance for the 5G model. As for 4G, historical RTTs ranked
as the top five important features. Next comes the down-
link MCS and RSRP. Note that all the new features bring a
non-negligible contribution to the model.

D. MODEL TRANSFERABILITY TO 5G
In Sec. IV, we verified that the model is transferable between
operators in the case of 4G data. However, when we evaluated

the 4G model on 5G data, this resulted in a significant drop
in accuracy of 51%. Figure 19 shows the density plots for
4G data from Op1 and Op2, which are quite similar and
explain why the model is transferable between Op1 and Op2.
On the other hand, the density plot for 5G data for Op1
is completely different from the 4G data. Thus, the model
from 4G data cannot be used for 5G data. New models
should be trained on 5G data to achieve high prediction
accuracy.

Takeaways. The ensemble classifier works very well on
5G data, although the distribution of RTT values is very
different from that of 4G. The model accurately predicted
85% of the high-delay cases. Enhancing the set of features
increases the model accuracy from 83% to 88%, which is a
reasonable improvement.

VIII. RELATED WORK
Existing studies have explored several approaches for pre-
dicting delay. The authors in [26] discussed different RTT
prediction systems and classified them into three classes:
a) localisation measurement systems; which use direct RTT
measurements to form a structured overlay network to pre-
dict RTT, b) network coordinate systems; which use the
geometric space to position the actual RTT measurement in
order to predict RTTwithout direct measurement, and finally,
c) matrix factorisation systems; that solve a large distance
matrix in order to predict RTT. Further, they reviewed the
performance, robustness, and security of these system. In the
context of Internet, [27] surveyed some techniques for end-
to-end Internet delay prediction, including the time series

VOLUME 9, 2021 169009

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 15. The performance of three ensemble models trained on the first week of September 2018 and evaluated over the following seven weeks. One
model was not retrained over the evaluation period, one model was retrained every day, and one model was retrained every week.

FIGURE 16. Distribution for RTT values for 5G data.

approach, queuing theory, machine learning, and neural
networks. Time-series approaches using the autoregressive
moving average (ARMA) models have been widely used
to predict RTT. [28] presented an autoregressive eXogenous
(ARX) model to study the variations in end-to-end packet
delay on the Internet. Although, [28] succeeded in using the
ARX model to formulate the Internet delay dynamics as a
control engineering problem, [29] showed that the ARMA
model as a linear time-invariant model is not suitable for
predicting the Internet delay owing to the high variations in

delay. Further, [30] used amachine-learning technique known
as ‘‘Experts’’ framework to estimate the RTT, each of several
‘‘experts’’ provides an estimated value. Theweighted average
of these estimated values is used to estimate the final RTT,
with the weights updated after every RTT measurement.

Recently, deep learning methods that use historical data
have been increasingly used for network performance pre-
diction. In the context of delay prediction, [31], [32] used
recurrent neural networks (RNNs) to model and predict Inter-
net delays. Although RNNs have proved to be very help-
ful in understanding delay dynamics, the long training time
makes them unpopular for online prediction. To overcome
the long training time, [33] proposed a new RNN approach
with a minimal gated unit (MGU) to capture temporal fea-
tures of RTT and reduce the computing cost. The proposed
RNNs achieved a root mean square error (RMSE) of 1.543.
In addition, [34] presented a hybrid neuro-fuzzy approach
for client-cloud server communication round-trip time (RTT)
prediction, achieving an accuracy of 79.36%. [35] presented
a Markov model with two states to predict the probability
density function of RTT instead of the actual value in LTE
and WiFi networks. Also, [36] proposed a machine learning
regression model to predict RTT for TCP in LTE networks.
Then, they discussed how such a model can be used to enable
more reliable scheduling between multiple communication
paths in the field of automated vehicles. The above studies
used different datasets and different ways of formulating the

169010 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

FIGURE 17. Prediction-recall curve, ROC curve, and confusion matrix for 5G data.

FIGURE 18. Top 15 high important features using random forest for 5G
data.

FIGURE 19. Density plots for RTT values for 4G and 5G data.

problem of RTT prediction, which do not allow for direct
comparison of results. However, the approach proposed in
our paper is close to the work in [21], which used traditional
machine learning to predict the latency in mobile broadband
networks. [21] revealed that the use of SVM, DT, and LR
models to predict RTT in mobile broadband networks does
not show high efficiency. The results show that performance
of 71% (F1-score) when using DT. In our work, we improve
the machine learning model by using an ensemble of differ-
ent classifiers and incorporating historical RTTs as features.
Further, we investigate the model transferability to 5G and
identify the cases in which the model fails.

IX. DISCUSSION
We built an ensemble model that can predict the occurrence
of high delays with 75% accuracy in 4G data. With high
delays, we refer to the worst 10% delay. In the presence of
multiple network interfaces that connect to different inde-
pendent operators, the proposed model can be used to decide
which interface to use for sending the next packet (i.e., by a
protocol such as MPTCP or multipath QUIC). As a result,
we can ensure an RTT within 60ms or 80ms, depending
on the operator, for up to 97.5% of the time. This is a
marked improvement over the default of 90%. We extend
these results to 5G; by using extra metadata, we can predict
85% of the high delays. Our model captures the relationship
between the misclassified samples and the duration of the
high-delay episodes. High-delay instances that last for one
second are contributing to almost 50% of the high-delay sam-
ples that were incorrectly predicted. To improve the accuracy,
we need more fine-grained measurements (e.g., every 100ms)
for RTT to detect such short episodes. However, this implies
a trade-off between accuracy and measurement overhead,
which we would like to explore in future work.

We identified two key properties of such delays as side
products for predicting high delays. First, they tend to cluster
time, and second, a non-trivial fraction is related to congested
radio links. The clustered nature of high delays suggests
that applications with strict delay requirements may need
to consider multi-connectivity. A limitation of our model is
that it cannot be directly applied to mobility cases. Never-
theless, we believe that many use cases with stringent delay
requirements are stationary (e.g., smart meters and Industry
4.0) [1]. Delays for moving users are strongly influenced by
handovers and channel fading [37]. The handover decision
is highly controlled by RSRP and RSRQ levels [38]. It is
not clear whether only these features can accurately help in
predicting high delays under mobility. In the future, we plan
to investigate this issue.

For our model to be useful, it must be deployable on end
devices with relatively limited resources. This implies that
we cannot opt for deep learning approaches that perform
well in time-series prediction tasks such as recursive neural
networks (RNNs). Our model has the ability to recognize
temporal patterns without the need to manually craft complex

VOLUME 9, 2021 169011

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

high-level features. For example, when using random forest in
our first dataset training, the size of the single tree saved to the
hard drive is approximately 0.6 MB. The memory required
for neural network solutions depends on the total number of
parameters, gradient, and activation. Recently, [39] presented
a comprehensive assessment of the trade-offs between the
performance of various machine learning models for binary
classification datasets. Their results confirm that our selection
of traditional machine learningmethods can bemore effective
in terms of memory and CPU than deep learning-based neural
networks.

X. CONCLUSION
We empirically investigated whether RTTs in mobile broad-
band networks could be accurately predicted. Using measure-
ment data from a large number of probes, we found that a
binary ensemble learning-based model can accurately predict
delay classes 80% and 88% of the time for 4G and 5G,
respectively.

The model is both interpretable and transferable. Further-
more, the model does not require extensive retraining but
rather a modest retraining with a weekly cycle. However,
it struggles when predicting short delay episodes and, to a
lesser extent, by demarcating the end of a delay episode.
Despite this, the model performs fairly well. For example,
an application using it to anticipate high delays (i.e., the worst
10%) should be able to react positively to 75% of them when
using a 4G connection.

Our findings are encouraging and can help inform the
scheduling of multipath transport protocols that aim to bound
delays. Next, we plan to implement our model in a multipath
scheduler and investigate the means to improve the detection
of short-lasting delay episodes. In addition, we plan to explore
modelling scenarios with high mobility.

REFERENCES
[1] M. Iwamura, ‘‘NGMN view on 5G architecture,’’ in Proc. IEEE 81st Veh.

Technol. Conf. (VTC Spring), May 2015, pp. 1–5.
[2] Y. Li, Z. Yuan, and C. Peng, ‘‘A control-plane perspective on reducing data

access latency in LTE networks,’’ in Proc. 23rd Annu. Int. Conf. Mobile
Comput. Netw., Oct. 2017, pp. 56–69.

[3] N. Larson, D. Baltrunas, A. Kvalbein, A. Dhamdhere, K. Claffy, and
A. Elmokashfi, ‘‘Investigating excessive delays in mobile broadband net-
works,’’ in Proc. 5th Workshop All Things Cellular, Oper., Appl. Chal-
lenges, Aug. 2015, pp. 51–56.

[4] S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, ‘‘5G
new radio: Waveform, frame structure, multiple access, and initial access,’’
IEEE Commun. Mag., vol. 55, no. 6, pp. 64–71, Jun. 2017.

[5] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu,
and H. Ma, ‘‘Understanding operational 5G: A first measurement study
on its coverage, performance and energy consumption,’’ in Proc. Annu.
Conf. ACM Special Interest Group Data Commun. Appl., Technol., Archit.,
Protocols Comput. Commun., Jul. 2020, pp. 479–494.

[6] A. Elmokashfi, D. Zhou, and D. Baltrünas, ‘‘Adding the next nine:
An investigation of mobile broadband networks availability,’’ in Proc. 23rd
Annu. Int. Conf. Mobile Comput. Netw., Oct. 2017, pp. 88–100.

[7] B. Han, F. Qian, S. Hao, and L. Ji, ‘‘An anatomy of mobile web perfor-
mance over multipath TCP,’’ in Proc. 11th ACM Conf. Emerg. Netw. Exp.
Technol., Dec. 2015, pp. 1–7.

[8] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, TCP Extensions for
Multipath Operation With Multiple Addresses, document RFC 6824, 2013.

[9] Q. De Coninck and O. Bonaventure, ‘‘Multipath QUIC: Design and eval-
uation,’’ in Proc. 13th Int. Conf. Emerg. Netw. Exp. Technol., Nov. 2017,
pp. 160–166.

[10] A. Kvalbein, D. Baltrūnas, K. Evensen, J. Xiang, A. Elmokashfi, and
S. Ferlin-Oliveira, ‘‘The nornet edge platform for mobile broadband mea-
surements,’’ Comput. Netw., vol. 61, pp. 88–101, Mar. 2014.

[11] Y. Li, C. Peng, Z. Yuan, J. Li, H. Deng, and T. Wang, ‘‘Mobilein-
sight: Extracting and analyzing cellular network information on smart-
phones,’’ in Proc. 22nd Annu. Int. Conf. Mobile Comput. Netw., Oct. 2016,
pp. 202–215.

[12] G. E. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control. Hoboken, NJ, USA: Wiley, 2015.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, andW. P. Kegelmeyer, ‘‘SMOTE:
Synthetic minority over-sampling technique,’’ J. Artif. Intell. Res., vol. 16,
no. 1, pp. 321–357, Jan. 2002.

[14] S.-J. Yen and Y.-S. Lee, ‘‘Under-sampling approaches for improving pre-
diction of the minority class in an imbalanced dataset,’’ in Intelligent
Control and Automation. Berlin, Germany: Springer, 2006, pp. 731–740.

[15] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
Statistical Learning, vol. 112. New York, NY, USA: Springer, 2013.

[16] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and
T.-Y. Liu, ‘‘LightGBM: A highly efficient gradient boosting decision
tree,’’ in Advances in Neural Information Processing Systems, I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, 2017,
pp. 3146–3154. [Online]. Available: http://papers.nips.cc/paper/6907-
lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[17] R. Polikar, ‘‘Ensemble learning,’’ in Ensemble Machine Learning. Boston,
MA, USA: Springer, 2012, pp. 1–34.

[18] Maps and Geodata From Statistics Norway. Accessed: Nov. 1, 2019.
[Online]. Available: https://www.ssb.no/natur-og-miljo/geodata

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,
A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Nov. 2011.

[20] D. Chicco and G. Jurman, ‘‘The advantages of the Matthews correlation
coefficient (MCC) over f1 score and accuracy in binary classification
evaluation,’’ BMC Genomics, vol. 21, no. 1, p. 6, 2020.

[21] A. S. Khatouni, F. Soro, and D. Giordano, ‘‘Amachine learning application
for latency prediction in operational 4G networks,’’ in Proc. IFIP/IEEE
Symp. Integr. Netw. Service Manage. (IM), Apr. 2019, pp. 71–74.

[22] 3GPP Specification, document TS 36.133 Release 8, 2013. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=2420

[23] 3GPP Specification, document TR 21.915 Release 15, 2019. [Online].
Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3389

[24] (Feb. 2020). HUAWEI 5G CPE Pro 2. [Online]. Available:
https://consumer.huawei.com/en/routers/5g-cpe-pro-2/

[25] Y. Wang, W. Liu, and L. Fang, ‘‘Adaptive modulation and coding tech-
nology in 5G system,’’ in Proc. Int. Wireless Commun. Mobile Comput.
(IWCMC), Jun. 2020, pp. 159–164.

[26] D. Mirkovic, G. Armitage, and P. Branch, ‘‘A survey of round trip
time prediction systems,’’ IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 1758–1776, 3rd Quart., 2018.

[27] M. Yang, X. R. Li, and H. Chen, ‘‘Predicting internet end-to-end delay:
An overview,’’ in Proc. 36th Southeastern Symp. Syst. Theory, 2004,
pp. 210–214.

[28] E. Kamrani, H. R. Momeni, and A. R. Sharafat, ‘‘Modeling internet delay
dynamics for teleoperation,’’ in Proc. IEEE Conf. Control Appl. (CCA),
2005, pp. 1528–1533.

[29] P. X. Liu, M. Meng, X. Ye, and J. Gu, ‘‘End-to-end delay boundary
prediction using maximum entropy principle (MEP) for internet-based
teleoperation,’’ inProc. IEEE Int. Conf. Robot. Automat., vol. 3, May 2002,
pp. 2701–2706.

[30] B. A. A. Nunes, K. Veenstra, W. Ballenthin, S. Lukin, and K. Obraczka,
‘‘A machine learning approach to end-to-end RTT estimation and its appli-
cation to TCP,’’ in Proc. 20th Int. Conf. Comput. Commun. Netw. (ICCCN),
Jul. 2011, pp. 1–6.

[31] S. Belhaj and M. Tagina, ‘‘Modeling and prediction of the internet end-to-
end delay using recurrent neural networks,’’ Proc. J. Netw., vol. 4, no. 3,
pp. 528–535, 2009.

169012 VOLUME 9, 2021

A. H. Ahmed et al.: Predicting High Delays in Mobile Broadband Networks

[32] A. G. Parlos, ‘‘Identification of the internet end-to-end delay dynamics
using multi-step neuro-predictors,’’ in Proc. Int. Joint Conf. Neural Netw.
(IJCNN), vol. 3, 2002, pp. 2460–2465.

[33] A. Dong, Z. Du, and Z. Yan, ‘‘Round trip time prediction using recurrent
neural networks with minimal gated unit,’’ IEEE Commun. Lett., vol. 23,
no. 4, pp. 584–587, Apr. 2019.

[34] R. Damaševičius and T. E. Sidekerskien, ‘‘Short time prediction of cloud
server round-trip time using a hybrid neuro-fuzzy network,’’ J. Artif. Intell.
Syst., vol. 2, no. 1, pp. 133–148, 2020.

[35] S. Yasuda and H. Yoshida, ‘‘Prediction of round trip delay for wireless
networks by a two-state model,’’ in Proc. IEEE Wireless Commun. Netw.
Conf. (WCNC), Apr. 2018, pp. 1–6.

[36] J. Schmid, P. Purucker, M. Schneider, R. V. Zwet, M. Larsen, and
A. Höß, ‘‘Integration of a RTT prediction into a multi-path communi-
cation gateway,’’ in Proc. Int. Conf. Comput. Saf., Rel., Secur. Cham,
Switzerland: Springer, 2021, pp. 201–212.

[37] H. Deng, C. Peng, A. Fida, J. Meng, and Y. C. Hu, ‘‘Mobility support
in cellular networks: A measurement study on its configurations and
implications,’’ in Proc. Internet Meas. Conf., Oct. 2018, pp. 147–160.

[38] M. Tayyab, X. Gelabert, and R. Jäntti, ‘‘A survey on handover manage-
ment: From LTE to NR,’’ IEEE Access, vol. 7, pp. 118907–118930, 2019.

[39] D. Preuveneers, I. Tsingenopoulos, and W. Joosen, ‘‘Resource usage and
performance trade-offs for machine learning models in smart environ-
ments,’’ Sensors, vol. 20, no. 4, p. 1176, Feb. 2020.

AZZA H. AHMED (Member, IEEE) received
the master’s degree from the University of Not-
tingham, in 2012. She is currently pursuing
the Ph.D. degree with the Simula Metropolitan
Center for Digital Engineering, Oslo, Norway.
Her research interests include communication net-
works management and control, network per-
formance optimization, network automation, and
machine learning to solve networks problems.

STEVEN HICKS (Member, IEEE) received the
master’s degree from the University of Oslo, Oslo,
Norway, in 2018, where he studied explainable
machine learning for medical use-cases. He is cur-
rently pursuing the Ph.D. degree with SimulaMet,
Oslo. His research interests include machine learn-
ing, explainable artificial intelligence, computer
vision, and medical multimedia.

MICHAEL ALEXANDER RIEGLER received the
Ph.D. degree from the Department of Informatics,
University of Oslo, Oslo, Norway, in 2015. He is
currently working as a Chief Research Scientist
at SimulaMet, Oslo. His research interests include
machine learning, video analysis and understand-
ing, image processing, image retrieval, crowd-
sourcing, social computing, and user intentions.

AHMED ELMOKASHFI (Member, IEEE)
received the Ph.D. degree from the University of
Oslo, Oslo, Norway, in 2011. He is currently a
Research Professor at the Simula Metropolitan
Center for Digital Engineering, Oslo. He is also
working as the Head of the Center for Resilient
Networks and Applications (CRNA), which is
part of the Simula Metropolitan Centre, which
is funded by the Norwegian Ministry of Trans-
port and Communication. His research interests

include network measurements and performance. In particular, he focused
on studying resilience, scalability, and evolution of the internet infrastruc-
ture; the measurement and quantification of robustness in mobile broadband
networks; and the understanding of dynamical complex systems. Over the
past few years, he has been leading and contributing to the development,
operation, and management of the NorNet testbed infrastructure, which is a
countrywide measurement setup for monitoring the performance of mobile
broadband networks in Norway.

VOLUME 9, 2021 169013

Article II

Ahmed, A. H., Hicks, S., Riegler, M.A., and Elmokashfi, A. (2022,
August 14 - 18,). RCAD:Real-time Collaborative Anomaly Detection
System for Mobile Broadband Networks. KDD '22: The 28thACM
SIGKDD Conference on Knowledge Discovery and Data Mining.
DOI: https://doi.org/10.1145/3534678.3539097

https://doi.org/10.1145/3534678.3539097

RCAD: Real-time Collaborative Anomaly Detection System for
Mobile Broadband Networks

Azza H. Ahmed
azza@simula.no

Simula Metropolitan Center for Digital Engineering
Oslo, Norway

Oslo Metropolitan University
Oslo, Norway

Michael A. Riegler
michael@simula.no

Simula Metropolitan Center for Digital Engineering
Oslo, Norway

University of Tromsø
Tromsø, Norway

Steven A. Hicks
steven@simula.no

Simula Metropolitan Center for Digital Engineering
Oslo, Norway

Oslo Metropolitan University
Oslo, Norway

Ahmed Elmokashfi
ahmed@simula.no

Simula Metropolitan Center for Digital Engineering
Oslo, Norway

ABSTRACT
The rapid increase in mobile data traffic and the number of con-
nected devices and applications in networks is putting a significant
pressure on the current networkmanagement approaches that heav-
ily rely on human operators. Consequently, an automated network
management system that can efficiently predict and detect anom-
alies is needed. In this paper, we propose, RCAD, a novel distributed
architecture for detecting anomalies in network data forwarding
latency in an unsupervised fashion. RCAD employs the hierarchi-
cal temporal memory (HTM) algorithm for the online detection
of anomalies. It also involves a collaborative distributed learning
module that facilitates knowledge sharing across the system. We
implement and evaluate RCAD on real world measurements from
a commercial mobile network. RCAD achieves over 0.7 F-1 score
significantly outperforming current state-of-the-art methods.

CCS CONCEPTS
• Computing methodologies → Anomaly Detection; • Net-
works → Mobile Broadband Networks.

KEYWORDS
Anomaly Detection, Hierarchical Temporal Memory, Multivariate
Time series, Mobile Broadband, Collaborative Distributed Learning

ACM Reference Format:
Azza H. Ahmed, Michael A. Riegler, Steven A. Hicks, and Ahmed Elmokashfi.
2022. RCAD: Real-time Collaborative Anomaly Detection System for Mobile
Broadband Networks. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’22), August 14–18, 2022,
Washington, DC, USA. KDD’22, Washington, DC, USA, 10 pages. https:
//doi.org/10.1145/3534678.3539097

This work is licensed under a Creative Commons Attribution
International 4.0 License.

KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9385-0/22/08.
https://doi.org/10.1145/3534678.3539097

1 INTRODUCTION
Mobile network operators face an increasing demand for mobile
data traffic that is paired with the need to support emerging and
novel services [34, 37]. This near continuous flux of data has com-
pounded the complexity of network operation andmanagement [14].
Operators need to enhance current network management practices,
because newer services like industrial control, connected mobil-
ity and emergency communication expect stringent service level
guarantees [17, 24]. At the same time, they need to keep the opera-
tional expenditures at a moderate level. A potential approach for
striking this balance is to build systems that can automatically and
efficiently predict and detect performance anomalies. In this paper,
we focus on the development of such a system.

Nowadays, troubleshooting in mobile networks is often con-
ducted at a coarse granularity and mostly manually. More specifi-
cally, operators collect key performance indicators (KPIs), usually
every hour, at various network elements like basestations and core
servers [22]. Then, they monitor those KPIs for deviations from
the norm using simple thresholds. This process is evidently slow,
coarse and reactive [33]. It can flag long varying problems, like
a continuously congested hotspot, but offers very little as far as
the timely identification of problems is concerned. For example,
Figure 1 shows two-hour long time series of per-second round trip
delays (RTT), a measure of network latency, and three coverage
quality indicators (RSRP, RSRQ, RSSI) that we measured at the same
location in a 4G network. We mark all anomalous measurements
with red circles. This figure shows that anomalies are a common
occurrence and must be tracked at a much finer granularity and can
simultaneously impact a number of KPIs, i.e. correlated behaviour.

Detecting anomalous behavior on a set of correlated time series
signals has been an active research area in the machine learning
community for a long time [7, 31]. Recent works on multivariate
anomaly detection based on deep learning [4, 15, 38] show promis-
ing results on several time series tasks, however, their performance
on mobile network data needs to be further studied. This is related
to the nature of the mobile data which poses some difficulties for
developing an anomaly detection system. First, in mobile networks
a large amount of data arrives at a rapid rate. The sheer volume of

2682

https://doi.org/10.1145/3534678.3539097
https://doi.org/10.1145/3534678.3539097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3534678.3539097
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3534678.3539097&domain=pdf&date_stamp=2022-08-14

KDD ’22, August 14–18, 2022, Washington, DC, USA Azza H. Ahmed et al.

the data makes it difficult to store it in its entirety, and it is even
more difficult to operate on it in real time. Second, the mobile net-
work is a distributed infrastructure composed of variety of probes
and sensors across the entire network. Most of the current anom-
aly detection methods aggregate all the data to a single point and
process them together. Such an approach, however, may become
difficult to realise or infeasible in the future due to the exponen-
tially growing size and scale of the network. Hence, carrying out
an efficient and distributed anomaly detection remains challenging.
Finally, network behavior changes rapidly over time and would
require frequent retraining of a static model which is specifically
challenging with deep learning-based approaches.

In this work, we propose RCAD, a novel real-time collaborative
anomaly detection framework for mobile networks. The system
involves two components. The first is an online distributed unsu-
pervised anomaly detection and prediction system. The second is
a collaborative framework for knowledge sharing and exchang-
ing to improve the overall system accuracy and compensate for
the lack of centralization. Specifically, we leverage a recent ma-
chine intelligence algorithm called hierarchical temporal memory
(HTM) [20] for anomaly detection. The unsupervised nature of
HTMmakes it able to automatically discover relationships between
variables. Moreover, compared to batch-based deep learningmodels,
the online nature of the HTM learning algorithm makes it able to
continuously learn relations between the variables without needing
to train it again. Inspired by the natural intelligence in humans
which allows them to transfer knowledge from known problems
and their solution towards unknown ones, we define a collaborative
framework between the distributed probes in the network. This
way, a probe that has been exposed to fewer anomalies can benefit
from other probes’ experiences to improve its detection accuracy.
We present two different collaboration approaches to help probes
deciding on whether to replace the current model: 1) threshold-
based model replacement and 2) deep reinforcement learning (DRL)
based model replacement. Using real world traces, we compare
RCAD to several anomaly detection methods as well as investigate
various approaches to realize RCAD. Our results demonstrate the
superiority of RCAD and show that RCAD with DRL-based model
replacement strikes a reasonable balance between accuracy and
overhead.

The rest of the paper is organized as follows. Section 2 reviews
existing unsupervised methods for detecting anomalies in multi-
variate time series. Section 3 presents our problem statement as
well as an overview of hierarchical temporal memory and related
collaborative machine learning methods. Section 4 sketches the
design of RCAD. Section 5 evaluates the performance of RCAD.
Finally, Section 6 concludes the paper.

2 RELATEDWORK
Anomaly detection in time series has been widely studied in the
literature. Here, we briefly review anomaly detection methods in
time series by categorizing them into supervised and unsupervised.

Supervised approaches require training a binary classifier using
labels of both normal and anomalous data. These methods are differ-
ent from the traditional supervised classifiers in that the algorithm

Figure 1: An example of multivariate time series data from
mobile broadband network. The time series spans two hours
and have one second granularity. The red circles indicate
anomalies.

should able to handle the temporal information in the data. NN-
DTW [5] is a popular classifier for time series that is based on the
nearest neighbor algorithm coupled with the dynamic time warp-
ing similarity measure. As this classifier achieves high accuracy in
time series, different supervised classifiers have been presented as
ensemble models based on nearest neighbor algorithm such as Prox-
imity Forest [27]. With deep learning advances, InceptionTime [13]
has been presented as a supervised time series classification method
that consists of an ensemble of deep Convolutional Neural Network
(CNN)models. Despite the high performance of supervisedmethods
in anomaly detection, these methods come with some drawbacks,
where the need of annotated data and that they cannot react to
changes in continuous data streams without being retrained which
is costly.

Different unsupervisedmethods have been proposed for anomaly
detection such as isolationmethods that focus on separating outliers
from the rest of the data. Isolation Forest (IF) [26] is a popular isola-
tion method based on decision trees. Unsupervised methods based
on deep learning techniques have recently received much attention,
especially autoencoder (AE) [36] basedmethods. Thesemethods use
the reconstruction error as the anomaly score, i.e. samples with a
high score are considered to be anomalous. DAGMM [40] leverages
a deep autoencoder and a Gaussian Mixture Model (GMM) to model
the density distribution of multidimensional data without consider-
ing the temporal dependencies. LSTM-VAE [32] combines LSTM
with a variational autoencoder (VAE); the LSTM-based encoder
projects the input data and its temporal dependencies into a latent
space. During decoding, it uses the latent space representation to
estimate the output distribution. LSTM-VAE detects an anomaly
when the log-likelihood of the current data is below a threshold.
OmniaAnomaly[38] uses a variant of recurrent neural network
(RNN) called gated recurrent unit (GRU) to capture temporal depen-
dencies between multivariate observations. Then, it applies VAE for
representation learning to map observations to stochastic variables.
It uses the reconstruction probabilities of input samples as anomaly
scores. Generative Adversarial Networks (GANs) [16] have also
been used in time series anomaly detection. The GAN is trained in
an adversarial way between the generator and the discriminator.

2683

RCAD: Real-time Collaborative Anomaly Detection System for Mobile Broadband Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

GAN-based anomaly detection uses the output of the discrimina-
tor as the anomaly score during inference. MAD-GAN [25] uses
LSTMs as the base models in the GAN framework (generator and
discriminator) to capture the temporal correlation of time series
distributions. USAD [4] combines the advantages of autoencoders
and GANs and presents an autoencoder model that is adversarially
trained to amplify the reconstruction errors for anomalies so that
the USAD model can detect the anomalies with small deviations
from normal data. Different from previous approaches, NSIBF [15]
is an unsupervised method for detecting operational failures in
cyber-physical systems (CPS). This framework is designed to tackle
the instability of CPS data, in which a neural network is used to cap-
ture the dynamics of CPS via a state-space model. Then a Bayesian
filtering method is applied on the "identified" state-space model and
anomalies are detected by estimating the probability of observed
measurements over time. These unsupervised methods come with
several challenges that make them less applicable in many real-
world scenarios such as they need normal data for training, process
data in batches and require considerable training data [6].

Recently, there has been a surge of interest in developing anom-
aly detection methods that are suitable for real-time streaming ap-
plications. The HTM framework is presented as time series anomaly
detection for real-time applications [2]. The anomaly score depends
on the prediction history of the anomaly namely forecast-based
model. RADM [11] is a real-time anomaly detection based on HTM
and bayesian network. The HTM detects anomalies in the univari-
ate time series composing the multivariate time series and produces
the anomaly likelihood. A naive Bayesian network takes as an input
the discretized values of the anomaly likelihoods of each univariate
series to assign the corresponding weights to each time series ac-
cording to the structure of the multivariate series. Similarly, HTM
has been used in heath care application [8, 12]. For instance, El-
Ganainy et al. [12] proposed an anomaly detection framework for
intensive care units in hospitals to predict the health conditions
of critically sick patients based on the vital signs. It applies online
learning using HTM to enable real-time stream processing and
provide unsupervised predictions. These predictions are passed to
an LSTM binary classifier that forecasts the status of the patient
either critical or not. In this work, there are 10 time series where
each one is processed separately using an HTM model to preform
predictions before feeding them to the LSTM classifier as features.

In this paper, we present a novel distributed anomaly detection
architecture, RCAD, that combines HTM with intelligent model
exchanging between different parts of the system, i.e. agents, to
maximize anomaly detection accuracy. Compared with the above
mentioned approaches, RCAD can process data streams in real-
time, learn the patterns of data continuously without training and
improve the overall system performance by sharing the knowledge
between models participating in the system. To the best of our
knowledge, RCAD is the first system that proposes model replace-
ment as a viable strategy for boosting accuracy.

3 PRELIMINARIES
In this section, we present the problem of anomaly detection in
mobile networks in details and provide preliminaries about HTM
and collaborative learning.

3.1 Problem Statement
In this work, we investigate the problem of anomaly detection in
mobile broadband networks. To this end, we use a dataset that
comprises a set of KPIs. These KPIs were collected by a set of
geographically spread probes that connect to a commercial mobile
network in Norway (see subsection 4.1 for details). KPIs are often
correlated since they describe the behavior of the same network. By
exploiting the correlation between these KPIs, we aim at producing
a model that timely predicts the temporal variation of a given KPI
based on the observation of other KPIs, which are considered as
predictors. The end goal is to predict anomalies that concern the
forecasted KPI, i.e. it exceeds a given threshold. This threshold is
defined by experts or based on operator’s policies.

A mobile broadband network is essentially distributed compris-
ing a large number of basestations that are geographically spread.
These basestations are controlled by a centralized core network
that keeps track of subscriptions, manages mobility and connects
users to the rest of the Internet. 1 This distributed nature has impli-
cations for systems that aim to predict and detect faults. Owing to
the volume and velocity of the data, local decision making is the
most feasible solution. However, by adopting a simple coordina-
tion between the neighbor nodes (i.e. probes that are served by the
same basetstation or basetations that are close to each other) we
can increase the efficiency of the system while maintaining local
decision. To this end, we can employ paradigms like collaborative
learning and model replacement.

Based on the above description of the problem,we can summarize
the requirements for the proposed solution as the following.

• The model must make online predictions using stream data
without back propagation.

• The model must learn continuously without storing the en-
tire data stream.

• The model must run unsupervised, without manual inter-
vention. No parameter tuning must be manually made at
run-time.

• The model should predict anomalies as early as possible and
minimize false positive and false negative predictions.

3.2 Basics of Hierarchical Temporal Memory
(HTM)

HTM is a brain-inspired neural network model that mimics the
structural properties of neocortex and the way the human brain
processes information [19]. HTM is essentially a memory-based
systemwhich relies on real-time sequence learning on time-varying
input streams [9]. The core of HTM is based on the principles of
biological neurons and synapses. Similar to the cortex structure, the
HTM network consists of multiple cortical columns, that contain
cortical layers. Each layer consists of mini-columns, which repre-
sent neurons (cells) with the same perceptual field. The basic unit in
HTM is the cell or neuron. A number of cells form the mini-column,
and a large number of mini-columns form the network space of
HTM as shown in Figure 2. A single HTM cell has two types of
connections: 1) proximal connection (aggregation of feed-forward
connections from the input) and 2) distal connection (aggregation

1The core can comprise a handful number of distinct sites.

2684

KDD ’22, August 14–18, 2022, Washington, DC, USA Azza H. Ahmed et al.

Figure 2: The hierarchical structure of HTM. The example
shows 2-level HTM, where each level consists of the regions
with mini-columns, and mini-columns are created from the
cells.

of lateral connections from cells of the other columns). Each cell
can be in three states: 1) inactive (the default state), 2) predictive,
and 3) active. The predictive state of a cell is determined by the
activity of the distal connections; the sum of activations weights of
at least one of the distal connections exceeds a certain threshold. A
cell becomes active at any time only if it was in the predictive state
at the previous time instant.

Figure 3 shows the end-to-end framework for the HTM-based
prediction system. Next, we elaborate on each component.

• Encoder. SDRs are the language of brain, therefore, HTM
uses SDR to represent the input data. An SDR consists of
a large array of bits where at any point in time a small
percentage of the bits are ones (in blue) and the rest are
zeros (in white). The encoder is responsible for determining,
for a given input value, which output bits should be ones
(active), and which should be zeros (inactive), in such a way
as to capture the important semantic characteristics of the
data. Different encoding schemes have been proposed for
the different data types such as numeric encoders, geospatial
encoders and natural language encoders [35].

• Spatial pooler. After data encoding as SDRs, the spatial
pooler identifies the spatial relations between different re-
gions in the incoming SDR and groups them together into
a common output representation based on spatial similar-
ity. The spatial pooler incorporates several computational
principles of the cortex. It relies on Hebbian learning in
modifying the nature of the proximal connections between
mini-columns and their inputs [21]. Each connection is as-
sociated with a permanence value. The permanence values
of synapses aligned with active input bits are increased, and
those aligned with inactive input bits are decreased [10].
Learning happens only in those mini-columns of the spatial
pooler which are active (in red), while inactive mini-columns
(white) will not learn anything. The output of spatial pooler
is an SDR representing the mini-columns of HTM that will
be activated by the temporal memory.

• Temporal memory. It represents the basic component of
HTM, i.e. the memory of sequences. Temporal pooling en-
ables us to understand the sequential pattern over time. It
learns the sequences of the active mini-columns from the spa-
tial pooler and determines the activated and predicted cells.
The temporal memory activates a cell if its mini-column is
active and it is in predictive state and deactivates the others.

If none of the cells in an active mini-column is in a predictive
state, all cells in this mini-column will be activated. When
a predictive cell receives a new input, the synapses on its
connections are reinforced through Hebbian learning. For
any such connection with few synapses, new synapses grow
to a randomly chosen subset of cells that were active in the
previous step [19].

• SDR classifier. Finally, the SDR classifier receives the set of
activated cells from the temporal memory and predicts the
likelihood of each possible input occurring the next step. This
classifier is a fully connected neural network with a softmax
activation function and cross-entropy loss function [9].

HTM has shown its efficiency and real-time capability of sequence
prediction and anomaly detection [2, 12, 39]. It can learn both the
temporal and spatial patterns using online training, unlike deep
learning which uses batch offline-learning and cannot work with
live streaming data. Moreover, HTM can adapt to changes in the
data streams, which is expected to happen often in networks. All
these properties make HTM the ideal candidate for the anomaly
detection part of our problem.

3.3 Related Collaborative Machine Learning
Methods

Conventional centralized machine learning (ML) approaches have
achieved great success in many applications that have enough data
storage and high computational power to train models. However,
in distributed systems where multiple edge devices generate a large
amount of data, the centralized learning is facing many challenges
such as communication costs, reliability, and privacy and secu-
rity concerns [1]. To address these issues, different collaborative
distributed ML methods have been recently introduced to allow
models to learn locally and benefit from other models, without the
need to centrally store data. Federated Learning (FL) is a popular
distributed ML approach developed by Google researchers, where
models are trained on distributed devices under centralized control
without sharing their local data [28]. The centralized unit aggre-
gates all locally trained models parameters to form a global model
shared by all edge devices. Split Learning is another distributed ML
approach released by the MIT Labs to train deep learning network
over multiple portions on distributed devices while mitigating the
need to share data directly [18].

In this work, we build on the basic concept of FL to improve
anomaly detection accuracy in a distributed environment. Concep-
tually, both FL and our approach leverage a number of distributed
agents to improve model accuracy. Our approach, however, brings
a novel addition to this form of learning. It shares models without
sharing parameters (e.g., the weights and biases of a deep neural
network) with the aim of maximizing the models efficiency. The
main intuition underpinning our approach is the fact that differ-
ent agents are exposed to different types and varying intensity of
anomalies, which markedly impact their fitness as far as anomaly
detection is concerned. Model sharing is essentially a sharing of
expertise. Note that HTM lends itself naturally to such an approach,
since its learning does not involve any form of parameter tuning.

2685

RCAD: Real-time Collaborative Anomaly Detection System for Mobile Broadband Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

Data Stream Encoder
SDR

Classifier

Sparse Distributed
Representation (SDR)

Spatial Pooler Temporal Memory

Active Inputs

Inactive Inputs

Active Mini-columns

Inactive Mini-columns

synapse

Figure 3: High-level architecture of the HTM system. The input data stream is encoded into SDR. This SDR is passed to spatial
pooler. Finally, the temporal memory learns temporal sequences of these SDRs and makes predictions for future inputs.

Probe 1

Probe 2

Probe N

HTM

Measurement
Probes

Data
Streams

Online Anomaly
Detection

RTT

RSRP

RSRQ

RSSI

Performance
Evaluation

HTM

RTT

RSSI

RSRP

RSRQ

Performance
Evaluation

RTT

RSSI

RSRP

RSRQ
HTM

Performance
Evaluation

Decision Unit
for Model

Replacement

Ground Truth

Metric 1

Metric 2

Metric n

Model x

Model y

Model z

Figure 4: RCAD architecture.

4 DESIGN OF RCAD
Figure 4 depicts the architecture of RCAD. It comprises a set of
probes that monitor various KPIs in real-time. These data streams
are then fed to a local online anomaly detection module that in-
volves an HTM and a performance evaluation component. The
online anomaly detection modules then share their results with a
module that decides on model replacement. Next, we elaborate on
each of these modules.

4.1 Data Collection
We leverage monitoring streams of KPIs that are collected by a set
of distributed probes. These probes are part of the Nornet Edge
(NNE) platform. NNE is a measurement setup for measuring the
performance and reliability of commercial mobile broadband net-
works, which consists of hundreds of stationary probes distributed
across Norway [23]. Each probe is a single board computer that
runs Linux and connects to commercial networks using commer-
cial subscriptions. Here, we focus on four KPIs, which are the RTT
between a probe and a central server that is part of NNE along
with three KPIs that monitor the quality of radio connectivity and
coverage. These are the received signal strength indicator (RSSI),
the reference signal received power (RSRP) and the reference signal
received quality (RSRQ). We have previously demonstrated that the

contribution of RSSI, RSRQ and RSRP in predicting high delays in
mobile networks [3]. For example, a worse RSRQ is indicative of a
congested cell which leads to a high delay. The RTT is measured ev-
ery second, while the other three KPIs are reported whenever there
is a change. Our goal is to build a model that can accurately predict
anomalies in RTT, i.e. increases in RTT. Each probe streams its KPIs
measurements to the anomaly detection module in real-time.

4.2 Online Anomaly Detection
We use HTM for online anomaly detection. Using the architecture
presented in Figure 3, we first feed the four KPIs data streams into
scalar encoders. Besides, we use a datetime encoder to encode the
corresponding timestamp value into time of day and day of week
representations. We combine all these binary encodings using a
multi encoder and pass them to a spatial pooler and a temporal
memory. The temporal memory is always in learning mode, mean-
ing that it learns from every sample it receives. The output from
the temporal memory acts as the input to the anomaly detection
algorithm in order to detect anomalies. The core of the HTM is
not highly sensitive to parameters [2] [20], therefore we use the
standard parameters set defined in [20]. We provide a description
of how we configure HTM (i.e., the number of columns, the number
of cells in each column and their connections) in Table 5 in the
Appendix.

4.3 Decision Unit for Model Replacement
This module is responsible for managing the collaboration between
the HTM models that are running at the probes. The model that
experiences a large number of anomalies and throughout the time
succeeds in detecting them, can share its spatial pooler and temporal
memory with other models that have less exposure to anomalies or
have low performance in detecting them. This allows each probe
in the measurement infrastructure to participate in improving the
performance of the overall system by sharing its experience on
learning anomalies with other probes in the system. The decision
unit is thus a centralized component that helps probes deciding
on whether they need to replace their models by recommending
using a model from another probe. In the following, we discuss two
approaches for steering model replacement.

4.3.1 Model Replacement based on Scoring. The simplest approach
is to pick the highest performing model at the moment of decision

2686

KDD ’22, August 14–18, 2022, Washington, DC, USA Azza H. Ahmed et al.

and instruct all probes to adopt it. Note the performance of the
model is assessed cumulatively from the start time to the exchange
decision time. In this approach, we assume that the probe itself
decides to replace its running model with another model, if its per-
formance is below a certain threshold. For each probe, we count
the number of failures and successes when detecting anomalies
and pass them to the central decision unit for model replacement.
The module decides that a certain probe should replace its running
model, if the number of its failures exceeds the pre-defined thresh-
old. The model with the highest success score is then chosen to
replace the current one.

4.3.2 Model Replacement based on Deep Reinforcement Learning.
Reinforcement learning (RL) is a learning paradigm that allows an
agent to learn how to sequentially make decisions by interacting
with an environment to maximize a certain reward. Formally, an
RL task can be modelled as a Markov decision process (MDP) with
state space 𝑆 , action space 𝐴, initial state distribution 𝑃0, transition
dynamics 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡), and a reward function 𝑟𝑡+1 = 𝑟 (𝑠𝑡 , 𝑎𝑡). The
agent goal is to maximize the cumulative reward 𝑅𝑡 =

∑∞
𝑖=𝑡 𝛾

𝑖−𝑡𝑟𝑖+1,
where 𝛾 ∈ [0, 1] represents the discount factor that trades-off the
immediate reward and future reward.

An agent’s behavior is defined by a policy 𝜋 , which maps a state
to an action (deterministic policy) or maps a state to a probability
distribution over all actions (stochastic policy). We can define a
Q-function, which measures the expected accumulated rewards
staring from any pair (𝑠𝑡 , 𝑎𝑡) and following the policy 𝜋 , as shown
below:

𝑄𝜋 (𝑠𝑡 , 𝑎𝑡) = E[
∞∑︁
𝑡=0

𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) |𝑎𝑡 ∼ 𝜋 (.|𝑠𝑡), 𝑠0 = 𝑠, 𝑎0 = 𝑎]

(1)
The agent aims to find an optimal policy 𝜋∗ when the𝑄∗ function

is maximized. In other words, a mapping from the environment
states to actions, that maximizes the expected return. The optimality
implies that 𝑄∗ satisfies the Bellman equation.

𝑄∗ (𝑠𝑡 , 𝑎𝑡) = 𝑟𝑡 + 𝛾E[𝑚𝑎𝑥𝑎′𝑄
∗ (𝑠𝑡+1, 𝑎

′
)] (2)

Deep RL (DRL) [29] leverages the deep learning methods to work
in complex environments, where the number of actions and states is
large, or where the environment is non-deterministic. In such cases,
evaluating every possible state-action pair to solve equation(2)
becomes impossible.

Here, we formulate the model replacement problem in a dis-
tributed environment as an MDP. We aim to enhance the overall
system performance through sharing learning experience between
the probes. With the aid of an DRL agent, we can determine which
model to choose and when to take the decision of the replacement.
The agent is an ensemble of 𝑁 models for 𝑁 probes, which resides
in the decision control unit. All models are running in real-time and
produce anomaly predictions. The evaluation module produces the
performance metrics of the predictions based on the ground truth
for every pre-defined period 𝜏 . The agent collects these metrics as
observations and takes decisions based on the accumulated reward.
Next, we elaborate on the details of our formulation.

State Space. Here, we have 𝑁 probes, each running a separate
model that generates anomalies predictions. Every 𝜏 time, each

model provides the agent (in the decision control) with performance
indicators namely; true positives (TP) and false negatives (FN).
These form the state space 𝑆 , at time step 𝑡 the state of the 𝑁 probes
(models) is given by:

𝑠 (𝑡) = [𝑇𝑃1 (𝑡), 𝐹𝑁1 (𝑡),𝑇𝑃2 (𝑡), 𝐹𝑁2 (𝑡) ...,𝑇𝑃𝑁 (𝑡), 𝐹𝑁𝑁 (𝑡)] (3)

Action Space. For each model 𝑛, we have 𝑁 actions. Let 𝐴𝑛
denote the action space for 𝑛 model and 𝑎𝑛 ∈ 𝐴𝑛 is the selected
action for probe 𝑛. Therefore for 𝑁 probes, we have 𝑁 × 𝑁 , i.e.,
the number of actions. The agent has to take choose an action for
each probe. At time step 𝑡 , the selected action 𝑎𝑡 = [𝑎1, 𝑎2, ...𝑎𝑁],
where 𝑎 ∈ [1..𝑁] refers to which model to replace with. In case no
replacement is recommended, the action value is set equal to the
currently running model.

Reward Function. The reward function is defined to guide the
agent to make desirable decisions in order to realize the objective
of the system. Here, our objective is to maximize the overall per-
formance of 𝑁 models in detecting anomalies. As we are more
interested in detecting high delays, we calculate the 𝑅𝑒𝑐𝑎𝑙𝑙 based
on the TP and FN from the state space for the overall system. The
agent is rewarded, if the current recall is greater than the previous
recall by a value of 𝜎 . We set 𝜎 = 0.1 to give emphasis to actions
that considerably increase the system performance.

𝑟 (𝑡 + 1) =
{
1, if 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑡)−𝑅𝑒𝑐𝑎𝑙𝑙 (𝑡−1)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑡−1) ≥ 𝜎
0, otherwise

(4)

DRL Agent. We implement our agent using the DQN algorithm,
which use a neural network to approximate the optimal Q-value
function𝑄 (𝑠, 𝑎;\) ≈ 𝑄∗ (𝑠, 𝑎) [29]. Here,𝑄 (𝑠, 𝑎;\) is called the Deep
Q-network (DQN) and \ is the parameter of the neural network.
The iterative update is used to train the Q-network and thus reduce
the mean-squared error of the Bellman equation. The configuration
of the DQN alongside the training process of the agent is explained
in the Appendix.

5 EXPERIMENTS
In this section, we evaluate our proposed framework on latency
measurements of 4G broadband network. We conduct extensive
experiments to answer the following questions:

(1) Anomaly detection: does HTM outperform other state-of-
the-art unsupervised methods for anomaly detection in mo-
bile networks data?

(2) Robustness to noise: comparedwith the state-of-the-artmeth-
ods, is HTM more robust to a high number of anomalies?

(3) Model replacement: in a distributed systems, can we utilize
the nature of HTM to implement a collaborative learning
paradigm that enhances the performance of anomaly detec-
tion?

5.1 Dataset
We leverage RTT measurements from one of the largest mobile
operators in Norway. More specifically, we use per second RTT
measurements from 10 probes. The length of each dataset is 15 days.
Alongside the RTT measurements, we collect also RSSI, RSRP and
RSRQ measurements. We define a threshold for classifying RTTs as

2687

RCAD: Real-time Collaborative Anomaly Detection System for Mobile Broadband Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

anomalous or not. This threshold is based on the RTTs distribution,
where we consider the top 10% RTT values as anomalous, which is
similar to the approach presented in [3]. Please refer to the appendix
for more details about the dataset.

5.2 Evaluation Metrics
Precision (P), Recall (R), and F1-score (F1) are used to evaluate
anomaly detection performance:

𝑃 = 𝑇𝑃
𝑇𝑃+𝐹𝑃 , 𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 , 𝐹1 = 2 ∗ 𝑃∗𝑅
𝑃+𝑅

where TP is True Positives, FP is False Positives and FN is False
Negatives.

We calculate the performance metric by comparing each pre-
dicted sample with the annotated ground truth, i.e point-wise eval-
uation. Other works such as [15, 38] use a point-adjust method
that considers a window as anomalous as soon as one of the points
it contains is detected as anomalous, even if the other points are
not. Figure 1 shows that most anomalies are point anomalies. Fur-
thermore, previous results have demonstrated that around 50% of
the anomalies are point anomalies [3]. Therefore, in this context
we use point-wise evaluation.

5.3 Results and Analysis
5.3.1 MV-HTM vs. other methods. To answer the first two re-
search questions, we compare the effectiveness of multivariate
HTM with four recent unsupervised anomaly detection methods.
These methods are OmniAnomaly [38], USAD [4], NSIBF [15] and
HTM+LSTM [12]. We choose these methods because they employ
diverse approaches and have shown excellent performance.

Table 1 shows the prediction, recall and F1-score of these meth-
ods for datasets from three different probes (Probe1, Probe3, Probe7);
each has a different delay profile (see Table 4 in Appendix). Probe1,
Probe3, and Probe7 have anomaly ratios of 23.23%, 41.95%, and 1% re-
spectively. Recall that deep learning methods, i.e., OmniaAnomaly,
USAD and NSIB are trained on normal data, while HTM uses on-
line learning on mixed data (normal+ anomalous). Unlike Omni-
Anomaly and NSIBF, USAD allows to define a threshold for detect-
ing anomalous samples. For OmniAnomaly and NSIBF, we tested
possible anomaly thresholds and use the results linked to the high-
est F1-score.

From Table 1, we can see that multivariate HTM yields superior
performance compared to the others across the three probes in
terms of F1-score. Also, HTM+LSTM achieves good results as it
uses HTM for prediction. However, the performance of the LSTM
classifier reduces the overall performance of the framework.

We observe that most methods achieve good performance on
Probe3. This is because it has a high rate of distinct anomalies i.e.,
anomalies that are associated with high magnitudes and last longer,
which makes them easier to detect. From the deep learning methods,
USAD has shown a consistent F-1 score for all three probes, but its
precision drops significantly for Probe3. While NSIBF achieves the
highest recall for Probe1 and Probe3, it results in a very low precision,
i.e. a very high extent of false alarms. This is mainly due to the fact
that the above mentioned threshold is automatically defined by the
method. In other words, this threshold was set to a value closer to

Figure 5: Overall system performance under four learning
methods:(A) Without collaborative learning (B) Centralized
learning (C) RCAD based on scoring (D) RCAD based on DRL.

normal samples. Moreover, we observe that the anomaly profile of
the probes have a clear impact on the performance of OmniAnomaly
and NSIBF. There is a notable performance degradation for Probe 7,
which has fewer anomalies than the other two probes. The other
probes experience almost similar performance to Probe1, Probe3,
Probe7 based on their anomalies level.

5.3.2 Approaches to realizing RCAD. In this experiment, we com-
pare four different learning schemes. The first involves only the
anomaly detection part of RCAD that is implemented distributively
without collaborative learning. The second is a centralized learning
architecture, in which we combine the data streams from all probes
in the system into one HTM model. In other words, we implement
the anomaly detection part of RCAD in a centralized fashion. The
third implements RCAD with model replacement based on the scor-
ing algorithm. We use 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10, which means the decision
of the replacement is taken if the model fails in detecting 10 con-
secutive anomalies. The fourth implements RCAD with DRL-based
model replacement. Here, we use 𝜏 = 120 that the agent collects
observations and takes actions of replacement every 2𝑚𝑖𝑛𝑠 . We
evaluate these learning schemes using one week data and study
the performance for both the overall system and individual probes.
Figure 5 shows the overall recall for all probes in the system on
daily basis. We can see that the centralized learning approach out-
performs all other methods and increases the overall system recall
by an average of 18% compared to models that learn individually.
In some days, RCAD based on DRL achieves similar performance
as the centralized learning. RCAD based on scoring shows slightly
better performance than no collaborative learning. Table 2 shows
the performance of individual probes (Probe1, Probe3, Probe7) un-
der the different learning methods. Similar to the overall system
performance in figure 5, the centralized learning outperforms all
other methods in boosting probes performance. RCAD based on
DRL comes second in improving the recall. Compared to the cen-
tralized learning, RCAD only improves the recall without a notable
enhancement in the precision. This is due to the objective function
that the DRL agent optimizes. Moreover, we can see that the probes
with fewer anomalies do not improve their performance signifi-
cantly in the RCAD with DRL-based model replacement, compared
with other probes having medium or high anomaly ratios. This
is owing to their low participation in the replacement process as
shown in Figure 6. However, all probes benefit from the centralized
learning regardless of the percentage of anomalies.

2688

KDD ’22, August 14–18, 2022, Washington, DC, USA Azza H. Ahmed et al.

Table 1: Performance comparison between multivariate HTM method and state-of-the-art methods on mobile networks data.

Methods Probe 1 Probe 3 Probe 7
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

OmniAnomaly [38] 0.621 0.658 0.639 0.698 0.704 0.701 0.378 0.122 0.184
USAD [4] 0.821 0.514 0.633 0.698 0.642 0.669 0.871 0.574 0.691
NSIBF [15] 0.323 0.785 0.458 0.616 0.755 0.679 0.064 0.091 0.0754
HTM+LSTM [12] 0.708 0.613 0.657 0.651 0.647 0.650 0.729 0.584 0.647
MV HTM 0.732 0.697 0.714 0.719 0.727 0.721 0.782 0.632 0.699

Figure 6: Participation of each probe to other probes inmodel
replacement decisions taken by the DRL agent. The value of
𝑐𝑒𝑙𝑙𝑖 𝑗 refers to the fraction of replacement decisions taken by
𝑃𝑟𝑜𝑏𝑒𝑖 to use 𝑃𝑟𝑜𝑏𝑒 𝑗 from all decisions.

Further, we extend our experiments for model exchange DRL-
based to understand the optimal policy for replacement decisions.
In this experiment, we test our trained agent on one day data and
check the actions of replacement (i.e., 720 actions). Figure 6 shows
the participation of each probe in the replacement decisions through
this snapshot. We can see that probes with fewer anomalies (for
example Probe5, Probe7, Probe8) do not make the most of this col-
laborative scheme and they stay on their current running models
without replacement with other probes. Moreover, other probes
are less likely to replace their running models with models of low
anomalies probes. On the other hand, probes with medium number
of anomalies (for example Probe1, Probe9, Probe10) are replacing
their models with the ones from high anomalies probes (for example
Probe3) most of the time with participation factor of 0.26, 0.21, 0.24,
respectively. In summary, probes with a high rate of anomalies
contribute the most in this collaborative method, which confirms
the intuition behind model replacement.

5.3.3 Effect of parameters. Having seen that RCAD yields excel-
lent performance, we now turn to investigating its sensitivity to
parameters values. The first parameter we look at is the threshold
for deciding to replace the current model by a probe. This threshold
refers to the number of consecutive failures in detecting anomalies.
We test three different values, namely 5, 10 and 15 which result in an

overall recall of 0.649,0.641 and 0.633, respectively for one-day long
dataset, i.e. the first day in our dataset. Note that we have set this
threshold to 10 in our evaluations. We observe minimal differences
between the three values. A lower threshold value seems to result
in a slightly better accuracy which comes at the cost of a higher
communication overhead though.

The second parameter we study is 𝜏 , which defines how fre-
quently the DRL agent collects the performance data from probes
to decide model replacement. Table 3 shows the agent’s behavior
during training for different values of 𝜏 using the same setup of
hyperparameters. Note that we test on the same dataset as for the
threshold parameter above. While a higher value of 𝜏 leads to a
faster convergence due to the reduction in training samples, it does
result in a marginally lower overall recall.

In summary, RCAD exhibits marginal sensitivity to parameter-
ization. This allows for adjusting parameters to choose a desired
balance between accuracy and overhead.

Table 3: Trade-off between training time and the system per-
formance under different values of 𝜏 .

Value of 𝜏

(mins)
Convergence
(episodes) Overall recall

2 900 0.703
15 700 0.683
20 650 0.677

6 CONCLUSION
In this paper, we propose RCAD, a Real-time Collaborative Anom-
aly Detection framework for multivariate time series based on HTM
and model replacement. The HTMmodel predicts anomalies in real-
time by learning sequences in data streams. Model replacement
allows probes with poor performing models to benefit from other
probes that have better performing models. We evaluate RCAD on
a two-week long dataset from 10 probes that are part of a setup for
measuring the performance of commercial mobile broadband net-
works in Norway. RCAD has demonstrated superior performance
to four state-of-art methods in terms of F1-score. Moreover, it has
demonstrated robustness to anomalies ratio and stability across
probes with different anomaly profiles. RCAD with DRL-based
model replacement has achieved a level of performance comparable
to a centralized HTM. For future work, it would be interesting to
test our method on applications with similar requirements as our
networking use case in addition to looking deeper into different
model exchange methods.

2689

RCAD: Real-time Collaborative Anomaly Detection System for Mobile Broadband Networks KDD ’22, August 14–18, 2022, Washington, DC, USA

Table 2: Performance comparison between RCAD and centralized learning.

Methods Probe 1 Probe 3 Probe 7
Precision Recall F1-Score Precision Recall F1-Score Precision Recall F1-Score

No CL 0.732 0.697 0.714 0.719 0.727 0.721 0.782 0.632 0.699
Centralized 0.792 0.735 0.762 0.741 0.731 0.736 0.831 0.714 0.768
RCAD-Scoring 0.741 0.707 0.723 0.725 0.718 0.721 0.793 0.642 0.710
RCAD-DRL 0.745 0.726 0.735 0.731 0.729 0.730 0.791 0.686 0.735

REFERENCES
[1] Haftay Gebreslasie Abreha, Mohammad Hayajneh, and Mohamed Adel Serhani.

2022. Federated Learning in Edge Computing: A Systematic Survey. Sensors 22,
2 (2022), 450.

[2] Subutai Ahmad, Alexander Lavin, Scott Purdy, and Zuha Agha. 2017. Unsuper-
vised real-time anomaly detection for streaming data. Neurocomputing 262 (2017),
134–147.

[3] Azza H Ahmed, Steven Hicks, Michael Alexander Riegler, and Ahmed Elmokashfi.
2021. Predicting High Delays in Mobile Broadband Networks. IEEE Access 9
(2021), 168999–169013.

[4] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. USAD: Unsupervised anomaly detection on multivariate time
series. In Proceedings of the 26th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 3395–3404.

[5] Anthony Bagnall, Jason Lines, Aaron Bostrom, James Large, and Eamonn Keogh.
2017. The great time series classification bake off: a review and experimental
evaluation of recent algorithmic advances. Data mining and knowledge discovery
31, 3 (2017), 606–660.

[6] Raghavendra Chalapathy and Sanjay Chawla. 2019. Deep learning for anomaly
detection: A survey. arXiv preprint arXiv:1901.03407 (2019).

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:
A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.

[8] Tesnim Charrad, Kaouther Nouira, and Ahmed Ferchichi. 2019. Use of Hierar-
chical Temporal Memory Algorithm in Heart Attack Detection. International
Journal of Computer and Systems Engineering 13, 5 (2019), 308–311.

[9] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. 2016. Continuous online sequence
learning with an unsupervised neural network model. Neural computation 28, 11
(2016), 2474–2504.

[10] Yuwei Cui, Subutai Ahmad, and Jeff Hawkins. 2017. The HTM spatial pooler—A
neocortical algorithm for online sparse distributed coding. Frontiers in computa-
tional neuroscience 11 (2017), 111.

[11] Nan Ding, Huanbo Gao, Hongyu Bu, and Haoxuan Ma. 2018. RADM: real-time
anomaly detection in multivariate time series based on Bayesian network. In
2018 IEEE International Conference on Smart Internet of Things (SmartIoT). IEEE,
129–134.

[12] Noha Ossama El-Ganainy, Ilangko Balasingham, Per Steinar Halvorsen, and
Leiv Arne Rosseland. 2020. A New Real Time Clinical Decision Support System
Using Machine Learning for Critical Care Units. IEEE Access 8 (2020), 185676–
185687.

[13] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. 2020. InceptionTime: Finding AlexNet for
Time Series Classification. Data Mining and Knowledge Discovery 34, 6 (2020),
1936–1962.

[14] Nick Feamster and Jennifer Rexford. 2017. Why (and how) networks should run
themselves. arXiv preprint arXiv:1710.11583 (2017).

[15] Cheng Feng and Pengwei Tian. 2021. Time series anomaly detection for cyber-
physical systems via neural system identification and bayesian filtering. In Pro-
ceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2858–2867.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[17] Michael Gundall, Mathias Strufe, Hans D Schotten, Peter Rost, Christian Mark-
wart, Rolf Blunk, Arne Neumann, Jan Grießbach, Markus Aleksy, and Dirk
Wübben. 2021. Introduction of a 5G-enabled architecture for the realization
of industry 4.0 use cases. IEEE access 9 (2021), 25508–25521.

[18] Otkrist Gupta and Ramesh Raskar. 2018. Distributed learning of deep neural
network over multiple agents. Journal of Network and Computer Applications 116
(2018), 1–8.

[19] JeffHawkins and Subutai Ahmad. 2016. Why neurons have thousands of synapses,
a theory of sequence memory in neocortex. Frontiers in neural circuits 10 (2016),
23.

[20] J. Hawkins, S. Ahmad, S. Purdy, and A. Lavin. 2016. Biological and Machine
Intelligence (BAMI). (2016). https://numenta.com/resources/biological-and-

machine-intelligence/ Initial online release 0.4.
[21] Donald Olding Hebb. 2005. The organization of behavior: A neuropsychological

theory. Psychology Press.
[22] Anand Padmanabha Iyer, Li Erran Li, and Ion Stoica. 2017. Automating diagnosis

of cellular radio access network problems. In Proceedings of the 23rd Annual
International Conference on Mobile Computing and Networking. 79–87.

[23] Amund Kvalbein, Džiugas Baltrūnas, Kristian Evensen, Jie Xiang, Ahmed
Elmokashfi, and Simone Ferlin-Oliveira. 2014. The Nornet Edge Platform for
Mobile Broadband Measurements. Computer Networks 61 (2014), 88–101.

[24] Mads Lauridsen, Lucas Chavarria Gimenez, Ignacio Rodriguez, Troels B Sorensen,
and Preben Mogensen. 2017. From LTE to 5G for connected mobility. IEEE
Communications Magazine 55, 3 (2017), 156–162.

[25] Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng.
2019. MAD-GAN: Multivariate anomaly detection for time series data with
generative adversarial networks. In International Conference on Artificial Neural
Networks. Springer, 703–716.

[26] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[27] Benjamin Lucas, Ahmed Shifaz, Charlotte Pelletier, Lachlan O’Neill, Nayyar Zaidi,
Bart Goethals, François Petitjean, and Geoffrey I Webb. 2019. Proximity forest:
an effective and scalable distance-based classifier for time series. Data Mining
and Knowledge Discovery 33, 3 (2019), 607–635.

[28] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[29] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
deep reinforcement learning. arXiv preprint arXiv:1312.5602 (2013).

[30] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[31] Guansong Pang, Chunhua Shen, Longbing Cao, and Anton Van Den Hengel. 2021.
Deep learning for anomaly detection: A review. ACM Computing Surveys (CSUR)
54, 2 (2021), 1–38.

[32] Daehyung Park, Yuuna Hoshi, and Charles C Kemp. 2018. A multimodal anomaly
detector for robot-assisted feeding using an LSTM-based variational autoencoder.
IEEE Robotics and Automation Letters 3, 3 (2018), 1544–1551.

[33] Georgios Patounas, Xenofon Foukas, Ahmed Elmokashfi, and Mahesh K Marina.
2020. Characterization and Identification of Cloudified Mobile Network Perfor-
mance Bottlenecks. IEEE Transactions on Network and Service Management 17, 4
(2020), 2567–2583.

[34] Cisco public. 2019. Cisco Visual Networking Index: Forecast and Trends,
2017–2022. Retrieved Feb 8, 2022 from https://twiki.cern.ch/twiki/pub/HEPIX/
TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf

[35] Scott Purdy. 2016. Encoding data for HTM systems. arXiv preprint
arXiv:1602.05925 (2016).

[36] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders
with nonlinear dimensionality reduction. In Proceedings of the MLSDA 2014 2nd
workshop on machine learning for sensory data analysis. 4–11.

[37] Konstantinos Samdanis and Tarik Taleb. 2020. The road beyond 5G: A vision and
insight of the key technologies. IEEE Network 34, 2 (2020), 135–141.

[38] Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. 2019. Robust
anomaly detection for multivariate time series through stochastic recurrent
neural network. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2828–2837.

[39] Chundong Wang, Zhentang Zhao, Liangyi Gong, Likun Zhu, Zheli Liu, and
Xiaochun Cheng. 2018. A distributed anomaly detection system for in-vehicle
network using HTM. IEEE Access 6 (2018), 9091–9098.

[40] Bo Zong, Qi Song, Martin Renqiang Min, Wei Cheng, Cristian Lumezanu, Daeki
Cho, and Haifeng Chen. 2018. Deep autoencoding gaussian mixture model for
unsupervised anomaly detection. In International conference on learning represen-
tations.

2690

https://numenta.com/resources/biological-and-machine-intelligence/
https://numenta.com/resources/biological-and-machine-intelligence/
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf
https://twiki.cern.ch/twiki/pub/HEPIX/TechwatchNetwork/HtwNetworkDocuments/white-paper-c11-741490.pdf

KDD ’22, August 14–18, 2022, Washington, DC, USA Azza H. Ahmed et al.

A SUPPLEMENTRAY MATERIAL FOR
REPRODUCIBILITY

We publish our dataset and code in a GitHub repository2 for public
to reproduce our experiments.

A.1 Datasets
In this work, we use measurements for RTT, RSRP, RSRQ from
10 probes recorded every second for two weeks. Each dataset has
training and testing subsets. Anomalies are presented in testing
dataset. However, for HTM experiments the training datasets con-
tain anomalies as well. Anomalies are being labelled based on the
data distribution considering the top %10 as anomalies [3]. Table 4
shows the statistics for these datasets.

Table 4: Dataset Information.

Dataset
name

Training Set
of Normal
data size

Testing
set size

Anomaly
ratio

Probe 1 479654 580157 23.23%
Probe 2 495265 543873 12.34%
Probe 3 416544 578450 41.95%
Probe 4 392363 573953 34.88%
Probe 5 520378 580028 8.61%
Probe 6 553435 542783 14.16%
Probe 7 526464 481394 1%
Probe 8 483626 532822 12.10%
Probe 9 496907 570786 22.63%
Probe 10 400416 567403 26.72%

A.2 Hierarchical Temporal Memory (HTM)
Implementation

For the implementation of HTM model, we use the Numenta Plat-
form for Intelligent Computing (NuPIC) published by Numenta on
Github.3. Noting that this library is only compatible with Python
2.7.

Model parameters are defined in a file which contain many de-
tails about how the HTMnetworkwill be constructed, what encoder
configurations will be used, and spatial pooler and temporal mem-
ory parameters. The model parameters we used in this experiment
are shown in Table 5.

Table 5: HTM Model Parameters.

Parameter Name Value
Number of columns 2048
Number of cells per column 32
Activation Threshold 8
Initial Permanence 0.21
Connected Permanence 0.5
Permanence Increment 0.1
Permanence Decrement 0.1
Max Segments Per Cell 255

2https://github.com/azza8903/HTM-MODEL_EXCHANGE/
3https://github.com/numenta/nupic

A.3 Reinforcement Learning Agent
Implementation for Model Exchange

To implement DQN agent, we use a deep neural network of one
hidden layer. We use Rectified Linear Unit (ReLU) as an activation
function for the hidden layer. The input layer size of the Q-network
represents the state space size which is 20 (number of probes in the
system (𝑁) = 10). The output layer size is 100 which represents the
total number of actions. We trained the agent using same algorithm
in [30]. The training parameters of the DQN are listed in Table 6.
We develop DQN agent by using PyTorch(version 1.8.1)4 which is
compatible with Python2.7.

Table 6: DQN Training Hyper-parameters.

Parameter Value
Experience-replay memory size 40000
Batch size 64
Target network update frequency B 1000
Learning rate 0.00025
Loss function MSE
Optimizer Adam Optimizer

4https://pytorch.org/

2691

Article III

Ahmed, A. H., and Elmokashfi, A. ICRAN: Intelligent Control for Self-Driving
RAN Based on Deep Reinforcement Learning, in IEEE Transactions on Network
and Service Management, vol. 19, no. 3, pp. 2751-2766, Sept. 2022,
DOI: https://doi.org/10.1109/TNSM.2022.3191746

https://doi.org/10.1109/TNSM.2022.3191746

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022 2751

ICRAN: Intelligent Control for Self-Driving RAN
Based on Deep Reinforcement Learning

Azza H. Ahmed , Member, IEEE, and Ahmed Elmokashfi

Abstract—Mobile networks are increasingly expected to sup-
port use cases with diverse performance expectations at a very
high level of reliability. These expectations imply the need for
approaches that timely detect and correct performance problems.
However, current approaches often focus on optimizing a single
performance metric. Here, we aim to address this gap by propos-
ing a novel control framework that maximizes radio resources
utilization and minimizes performance degradation in the most
challenging part of cellular architecture that is the radio access
network (RAN). We devise a method called Intelligent Control
for Self-driving RAN (ICRAN) which involves two deep rein-
forcement learning based approaches that control the RAN in a
centralized and a distributed way, respectively. ICRAN defines
a dual-objective optimization goals that are achieved through
a set of diverse control actions. Using extensive discrete event
simulations, we confirm that ICRAN succeeds in achieving its
design goals, showing a greater edge over competing approaches.
We believe that ICRAN is implementable and can serve as
an important point on the way to realizing self-driving mobile
networks.

Index Terms—Self-driving network, slicing, RAN, resource
allocation, performance optimization, deep reinforcement learn-
ing, ns-3 simulation, DDPG.

I. INTRODUCTION

THE FIFTH generation mobile network, 5G, has trans-
formed the mobile network into a multi-service

architecture that supports diverse use cases with varying
requirements [1]. 5G virtualizes network resources and chains
them into end-to-end network slices that are adapted to use
cases’ requirements. This flexibility makes mobile networks
increasingly complex to manage [2]. Furthermore, several
envisioned use cases like public safety communication and
industrial control have stringent performance expectations.
Hence, multi-slice 5G and 6G networks must be capable
of quickly detecting and correcting performance degradation.
Current mobile networks resort to pre-configured priorities,
over-provisioning and at best implementing traditional closed
loop control systems with a limited scope like in the case of
self-organizing networks (SON) [3]. The need for intelligent

Manuscript received 4 May 2022; revised 4 July 2022; accepted 13
July 2022. Date of publication 18 July 2022; date of current version
12 October 2022. The associate editor coordinating the review of this article
and approving it for publication was M. Tornatore. (Corresponding author:
Azza H. Ahmed.)

Azza H. Ahmed is with the Center for Resilient Networks and Applications,
Simula Metropolitan Center for Digital Engineering, 0167 Oslo, Norway,
and also with the Center for Resilient Networks and Applications, Oslo
Metropolitan University, 0176 Oslo, Norway (e-mail: azza@simula.no).

Ahmed Elmokashfi is with the Center for Resilient Networks and
Applications, Oslo Metropolitan University, 0176 Oslo, Norway.

Digital Object Identifier 10.1109/TNSM.2022.3191746

automation has motivated the academia and industry to argue
for building “autonomous” or “self-driving” networks, where
network management and control decisions are made in real-
time and in an automated fashion [4]. For instance, the Open
Radio Access Network (O-RAN) architecture, which aims to
realize the RAN as a set of visual network functions on com-
modity hardware, has identified supporting intelligent RAN
control as a key design goal [5]. Despite all these effort,
building “self-driving” mobile networks that are practically
deployable has largely remained unrealized.

A major challenge in this respect, having in mind the scale
of mobile networks, involves devising a control architecture
that balances complexity and overhead. Further, there is a
lack of unified control approaches that can deliver on multiple
objectives (e.g., maximize resource utilization while ensuring
an acceptable level of performance). More specifically, the
existing proposals focused on tracking and optimizing a single
metric like coverage [6], power management [7], throughput [8]
and resource sharing [9] at a time. It flows directly from this
limited focus that current approaches resort to often applying a
single control action, e.g., adjusting base station transmit power.
However, a multi-slice network is by definition a multi-service
network. Hence, tracking a single metric is bound to assure
quality for a subset of the services that run on the network. A
viable approach to realizing self-driving mobile networks must
be able assure quality for all running slices according to their
priority and service level agreements (SLAs). Achieving this
requires choosing and mixing diverse control actions, e.g.,
simultaneously adjusting coverage and optimizing resource
allocation. Here, we aim to bridge this gap by proposing a
machine learning based approach to manage resource utilization
and performance in the RAN. We focus on the RAN, because
its performance and reliability heavily impact users’ quality
of experience [10]. Our approach tracks and optimizes diverse
use cases. To this end, it employs several different control
actions.

We propose, ICRAN, an intelligent control scheme for a
multi-slice RAN. ICRAN leverages deep reinforcement learn-
ing (DRL) to derive strategies for maximizing resource utiliza-
tion and minimizing SLA violations under different network
conditions. Reinforcement learning is a machine learning (ML)
approach where intelligent agent/agents interpret and interact
with their environment and learn how to achieve certain objec-
tives via cycles of trial and error based learning. We introduce
both a centralized and distributed control schemes. In the for-
mer, a single controller optimizes the configurations of all base
stations, while each base station has own controller in the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9605-4043
https://orcid.org/0000-0001-9964-214X

2752 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

latter. Following an initial training phase, the controller con-
tinuously monitors the state of the network and immediately
reacts to performance degradation by executing actions that
extend coverage and regulate resource usage. We implement
ICRAN using the OpenAI Gym framework [11] and the ns-3
simulator [12]. Our evaluations show that ICRAN converges
quickly to strategies that help maximizing radio resource uti-
lization and minimizing SLA violations for the entire network.
ICRAN outperforms approaches that leverage DRL, imple-
ment adaptive priority-based resource management as well
as those resorting to heuristics to react to network changes.
The benefit from ICRAN spans regimes where the network is
lightly loaded, running at its capacity, and is heavily loaded.
For example, ICRAN utilizes 97% of available radio resources
when the network is loaded at 200% that is 7% higher than the
next best method. At the same time, it reduces the number of
SLA violations for slices with stringent requirements, that is
achieved by the next best method, by up to a factor of three.
This work is the first to apply deep reinforcement learning
to collectively solving multiple RAN control problems. The
previous work has mainly focused on optimizing for a single
control problem.

A. Contributions

The main contributions of this paper are summarized in the
following:

1) We propose ICRAN a novel control framework based
on DRL that is capable of maximizing resource uti-
lization and minimizing SLA violations in a multi-slice
RAN. ICRAN introduces a novel reward function and an
action space with diverse actions which allows for opti-
mizing multiple objectives collectively, namely antenna
tilt, traffic load balancing, and resource allocation.

2) We investigate two different control architectures for our
framework; centralized and distributed control. In the
centralized framework, we formulate the problem as a
single-agent DRL whereas, the distributed problem is
solved via a multi-agent DRL.

3) Finally, we validate the performance of our proposed
framework through extensive simulations using ns-3.
The experiment results show that our method outper-
forms the state-of-the-art methods in radio resources
management. Moreover, the advantage of our method
persists under different networking conditions such as
high congestion and radio failure.

B. Paper Structure

The remainder of the paper is organized as follows. The next
section gives the background of this work, while Section III
covers related research on RAN slicing and the applica-
tion of DRL in mobile networks. In Section IV, we discuss
the overall system model from a high-level perspective. We
describe in Section V the scheduling algorithm with slicing
constraints that we consider. Then, we proceed to elaborate
our DRL problem formulation and the algorithms we develop
to solve the problem. We present our experimental setup in
Section VI and we evaluate the performance of ICRAN and
compare it with some baselines and state-of-the-art methods

in Section VII. In Section VIII, we discuss our findings,
the implementation considerations and the limitations of this
work and how to address them in the future. Finally, a brief
concluding remarks are provided in Section IX.

II. BACKGROUND

Unlike the previous generations of mobile networks, 5G
is designed to support a wide range of services with diverse
requirements. These requirements span a wide range in terms
of expected throughout, latency, reliability, mobility and num-
ber of devices [13]. A single static network architecture,
however, can not cater for this diversity. This motivated a pivot
towards realizing multiple isolated logical networks, with dif-
ferent configurations, over the same physical infrastructure,
i.e., network slicing [14], [15], [16], [17]. Recent advances in
defining network elements and network configurations in soft-
ware have made this pivot possible. Key technologies in this
respect are software defined networking (SDN), network func-
tion virtualization (NFV) and cloud-native network functions
(CNFs). SDN decouples the network data and control planes
and centralizes network control which allows for a full network
programmability [18]. NFV transfers network functions like
routers and firewalls from specialized physical implementa-
tions (i.e., a hardware box with tailored software) to software
implementations that can run as virtual machines on a general
purpose computers. VNFs can be chained to form an end-
to-end network architecture [19]. Finally, CNF is a natural
evolution of VNF that shrinks them to run as containers and
optimizes them to run in the cloud [20]. SDN and NFV/CNF
complement each other towards building an end-to-end soft-
ware defined and programmable network architectures. In the
Long-Term Evolution (LTE) mobile core network, the data
and control plane functions are realized by dedicated hard-
ware that implements each specialized function. However, the
5G core is designed to be “cloud-native”, in the sense that
the functions that handle the control and data planes, e.g.,
UPF and AMF, could be deployed as VNFs/containers on
a cloud infrastructure. The use of NFV and SDN has been
started from core and networking middleboxes and extended
to RAN functions. The development of open and intelligent
RAN (O-RAN) has received great attention [21]. O-RAN is
proposed to enhance the RAN performance through virtual-
ized network elements and open interfaces that incorporate
intelligence into the RAN. O-RAN introduces programmable
components that can run optimization routines with closed-
loop control and orchestrate the RAN. Specifically, the O-RAN
has logical controllers that monitor the status of the network
(e.g., number of users, load, throughput, resource utilization)
and process this data leveraging AI/ML algorithms to deter-
mine and apply control policies and actions on the RAN, for
example, network and RAN slicing, load balancing, handovers
and scheduling [5].

III. RELATED WORK

A. RAN Slicing

End-to-end slicing involves virtualizing the RAN, the trans-
port and the core. The former is specific to mobile networks

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2753

while the latter two are common across different types of
networks, e.g., data centers. Further, RAN slicing requires an
efficient approach to resource management given the limited
nature of the virtualized-resource in question, i.e., radio spec-
trum. To this end, there are several proposals which we discuss
next.

Various traditional algorithms have been proposed for tack-
ling the resource scheduling and allocation problems in the
RAN. Nojima et al. [22] presented three resource allocation
methods for RAN slicing by slightly modifying the con-
ventional MAC scheduling algorithms: 1) a static allocation
method, which allocates Resource Blocks (RBs), that is the
smallest units of resources in frequency and time that can
be allocated to a user, in a fixed manner regardless of the
channel conditions of users in each slice, 2) a round-robin
allocation algorithm, which allocates RBs to each slice sequen-
tially and based on the channel conditions of users in each
slice, 3) a per-user priority algorithm that allocates RBs to
users based on their priority within their respective slice. Their
experiments showed that the priority-based algorithm achieved
higher throughput compared to that resulted by the static and
round-robin algorithms. However, all these methods do not
consider satisfaction of the slice requirements when allocat-
ing RBs to a slice. Thus, Shrivastava et al. [23] proposed
a method that allocates RBs to slices taking into account the
desired SLA. This approach allows for a flexible assignment of
RBs, which allocates temporarily unused RBs to slices in need
with the possibility of allocating more RBs than necessary. To
address this, Bakri et al. [24] proposed a data-driven mech-
anism for sharing RAN physical resources among different
network slices based on optimal value for RBs. The proposed
algorithm calculates the optimal value for the radio resources
based on the Channel Quality Indicator (CQI) reports col-
lected by the base stations. The algorithm is running at the
slice orchestrator level which adapts to two slices with dif-
ferent quality of service (QoS) requirements, specifically ultra
reliable and low latency communications (URLLC) slice and
enhanced Mobile Broadband (eMBB) slice. To reduce the
overhead of sending the CQI values between the base station
and the slice orchestrator, the authors presented a machine
learning model to predict the user equipment (UE) channel
stability. If the channel quality is relatively stable, the CQI
values do not vary much in time. Therefore, frequent CQI
reports will not affect the performance of the slicing algorithm.
Unlike our work, the proposed method calculates the required
radio resources based on only one key performance indica-
tor (KPI), i.e., either latency or throughput and thus cannot
directly support other types of slices. Moreover, their results
showed that there is a threshold on the number of users in
each slice when the SLA is violated without considering how
to minimize those SLA violations.

Aligned with the recent advances in DRL, Mei et al. [8]
presented a hierarchical framework based on integrating
the deep deterministic policy gradient (DDPG) and double
deep-Q-network algorithm to solve RAN slicing problem.
Specifically, this framework consists of two controllers: an
upper-level controller which adjusts the slice configuration
to improve QoS performance at a coarse granularity and a

lower-level controller that schedules network resources and
power allocation to active UEs in each network slice at a fine
granularity. Their results showed that RBs in RAN slices can
be managed efficiently using the DDPG for RB allocation.
However, in this method, if the number of slices is differ-
ent from the number of slices during training, RB allocation
to slices is impossible. Therefore, RB allocation indepen-
dent of the number of slices was proposed in [25], where
Liu et al. presented a method called DeepSlicing which tackles
the problem of resource allocation in multi-slicing networks in
two stages. The first stage allocates resources to users within
a slice through DRL that learns the optimal policy in each
network slice to maximize the overall utilities of users in the
slice while satisfying the users’ SLA. The second stage coordi-
nates the resource allocation across the network slices. Similar
to our work, this work leverages the DRL advances in RAN
resource management. However, our work goes beyond the
efficient resources allocation solution to explore a large action
space containing other possible actions such as antenna tilt
optimization and load balancing between the base station to
achieve near-zero violations of slices’ SLA. To address the
problem of the long training time needed by DRL methods,
Abouaomar et al. [26] proposed a federated DRL mechanism
to collaboratively train a DRL model for bandwidth allocation
in RAN slicing. Their simulation results have shown that the
model trained using federated learning is more robust against
environment changes compared to models trained separately
by each mobile virtual network operator.

B. Deep Reinforcement Learning in Mobile Networks

The advances in DRL have led to outstanding success in
various domains. DRL has been recently proposed for solv-
ing many wireless communication problems. Several surveys
summarized these works. For example, Luong et al. [27]
provided a comprehensive overview of deep reinforcement
learning application in communications and networking such
as dynamic network access, data rate control, wireless caching,
data offloading, network security and connectivity preser-
vation. Compared to [27] which focused on single agent
problems, Feriani and Hossain [28] presented an overview of
both single-agent and multi-agent reinforcement learning as
key enabling technologies of future wireless networks. They
highlighted the potential for applying cooperative multi-agent
reinforcement learning to different domains such as mobile
edge computing (MEC), unmanned aerial vehicles (UAV)
networks and massive MIMO. Other surveys reviewed the
application of deep reinforcement learning algorithms in spe-
cific domains such as Internet of Things (IoT) [29], URLLC in
6G networks [30], vehicular networks in 6G [31] and mobile
edge caching [32]. Recently, Seid et al. [33] proposed a multi-
UAV enabled IoT edge approach for dynamic task offloading
and resource allocation leveraging multi-agent DRL methods.
They aimed to minimize the overall network computation cost
while ensuring the QoS requirements of IoT devices or UEs
in the IoT network.

In general, the previous proposals can be divided into two
groups based on the action space. The first applies deep

2754 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Q-learning to problems with a discrete action space, while
the second applies actor-critic methods to problems with a
continuous action space. Further, almost all existing work
revolves around executing a single principal action. For exam-
ple, Nasir and Guo [7] proposed a power allocation scheme
based on deep Q-learning model (DQN). Each transmitter
collects channel state information and QoS information from
several neighbors and adapts its own transmit power accord-
ingly. Also, Li et al. [34] used DQN method to tackle the
resource allocation multi-user computation offloading in wire-
less MEC. Recently, Ren et al. [35] addressed the problem of
dynamic resource allocation for MEC slicing system using
DDPG algorithm. They formulated the resource allocation
problem as Markov decision process (MDP) in which, the
wireless resources and computing resources are configured
dynamically according to the requirements of different types
of slices to maximize the network operator revenue. Similarly,
Seid et al. [36] leveraged DDPG algorithm to optimize the
computational costs and resource allocation to satisfy the QoS
of Edge IoT devices. They proposed a collaborative framework
where each agent learns from the previous offloading experi-
ences and dynamically associates the nearest computational
node with the UAV network. We refer the reader to the afore-
mentioned surveys and the references for a comprehensive
overview of previous efforts.

In this paper, we propose ICRAN as a control approach for
performance optimization based on DRL in a multi-slice RAN.
We present two variants of ICRAN: single agent and multi-
agent. ICRAN uses an actor-critic method due to its continuous
action space. This work is, to the best of our knowledge,
the first work to date that presents a DRL-based approach
that both maximizes radio resource utilization and minimizes
SLA violations simultaneously. Also, our work is the first, in
this application area, to propose the use of three inherently
different categories of actions.

IV. SYSTEM MODEL

In this section, we present the problem statement, the system
and traffic models, and our control approach.

A. Problem Definition and System Architecture

Network performance optimization represents one of the
major challenges for mobile network operators, especially in
RAN [37]. Near-future mobile networks are going to sup-
port users with different service requirements by leveraging
network slicing. Therefore, an efficient scheduling mechanism
is essential for allocating available resources to these different
types of services. Since traffic is dynamic, a static resource
allocation is bound to fall short in maximizing resource uti-
lization while maintaining the SLA. Hence, there is a need
for an adaptive control mechanism that steers the network
in response to traffic demand variations and anomalies. This
paper proposes a DRL-based framework, ICRAN, that maxi-
mizes resource utilization and minimizes SLA violations in a
multi-slice RAN.

We investigate RAN control in LTE cellular network con-
sisting of M eNBs that serve N users, who connect to

Fig. 1. The LTE reference architecture that we use in our framework.

three different slices with diverse service requirements (see
Figure 1). The number of users that connect to the three slices
is NS1, NS2 and NS3, respectively. The core network con-
tains the serving gateway (SGW), packet data network (PDN)
gateway (PGW), and the mobility management entity (MME).
Among other functions, the MME is responsible for paging
procedures of UEs upon arrival. When a new UE arrives to
the network, a logical channel is established between the UE
and eNB called a radio bearer, which also connects the UE
to IP-based networks through the evolved packet core (EPC).
The radio bearer is associated with QoS parameters based on
the application it serves. A key parameter in the respect is the
QoS Class Identifier (QCI).

We choose to focus on LTE because realistic 5G simula-
tion models are still under development. For example, the
current models do not support handovers yet [38], which is
an essential feature in mobile networks and in our framework.
Nevertheless, we believe that this choice has no impact on
the generalizability of our results to 5G networks, because we
are not making any assumption that is only limited to LTE.
Our simulation implements all the 4G core network compo-
nents (PGW, SGW, PDN, MME and EPC), UE, MAC layer, as
well as all higher protocol such as Radio Link Control (RLC),
Packet Data Convergence Protocol (PDCP), Radio Resource
Control (RRC) which closely resemble that of 5G. Unlike
4G, 5G base stations (i.e., gNBs) and UEs might support
multiple numerologies, however this feature does not affect
the functionality of ICRAN.

In our system model, we assume a DownLink (DL) dom-
inated traffic model, in agreement with today’s traffic pat-
terns [39]. Generally speaking, LTE supports two traffic
patterns:

• Guaranteed Bit-Rate (GBR): GBR traffic requires a con-
stant throughput, irrespective of the required resources it
takes to fulfill it. Voice-over-IP (VoIP) is an example of
an application that expects a GBR.

• Non-guaranteed Bit-Rate (Non-GBR): this traffic pattern
does not have rigid throughput requirements and can
use any unused resources left by guaranteed services.
Applications like Web browsing can be considered as a
non-GBR service. Based on the users’ channel conditions
and scheduler decision, the throughput is determined.

LTE introduced several QCIs to tag different traffic pat-
terns, which have been used by various works to realize the
slicing [40], [41], [42]. Here, we leverage QCI values to define
three slices that we summarize in Table I. The first slice rep-
resents the GBR service which has the strictest SLA both in

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2755

TABLE I
SLICES DEFINITION

terms of throughput and delay requirements. Both Slice 2 and
Slice 3 are non-GBR services, however, Slice 2 has a mini-
mum throughput that the network should provide. Finally, Slice
3 is the best-effort slice that uses the remaining resources.
We assume that every user is a member of only one of the
three slices. This is a reasonable assumption for the majority
of users.

B. Control Frameworks and Levers

We propose two different control architectures for ICRAN.
1) Centralized ICRAN (ICRAN-C): In this architecture, we

consider a single centralized controller (agent) that can fully
observe the network information and reconfigure the entire
network accordingly. Even though a centralized decision-
making may be the best in performance, it is usually imprac-
tical due to the potential signaling overhead. Furthermore,
in practical implementations, a centralized solution can be
slow. It is difficult for a centralized algorithm to quickly
find an optimal solution because the search space increases
exponentially as the size of the network increases [43].

2) Distributed ICRAN (ICRAN-D): To avoid the pitfalls of
centralized control, a partially centralized or a fully decen-
tralized control architecture is needed. Here, each eNB takes
its own decisions without considering other eNBs’ state and
decision, or with little information about all or some eNBs,
for example neighbouring eNBs. Having a fully independent
decentralized architecture, may result in conflicting strategies
as each eNB is essentially trying to find its own optimal
solution [43]. Therefore, in this architecture we assume the
existence of a communication channel between the eNBs to
exchange the information needed to find the optimal solution.
We can utilize the existing X2 interface (or Xn interface in 5G
stand-alone) between the eNBs (or gNBs in 5G) to exchange
information needed for RAN control.

As control is essentially the act of adapting the state of a
system in response to internal and external stimuli, a controller
needs levers to adjust the state of the system. Here, we exploit
three primitives that are available in today’s networks, which
we describe next.

1) Optimize antenna tilt: There are some parameters that
can be used to optimize the network coverage and capac-
ity. Antenna tilt is one of these parameters that can be
easily modified in an automatic way in order to optimize
the network coverage. Antenna tilt can be defined as
the inclination angle between the antenna’s main beam
and the horizontal plane [6]. The optimal antenna tilt
value for a cell depends on the tilt values of its neigh-
bors; too much downtilt can result in coverage holes,
while too little downtilt will lead to interference with

Fig. 2. Our RAN slicing model.

neighboring cells. We assume that only one cell can
update its antenna tilt at each time step. This makes it
easier to identify the impact of that change on coverage
and performance.

2) Performance triggered handovers: In conventional LTE
networks, handovers are mainly event-triggered. UEs
measure their signal quality and report it back to
the serving eNB, which uses these reports to initiate
handovers when needed. Besides this, we redefine han-
dover to include performance triggered handovers. For
instance, the intelligent controller can shift users to a
nearby eNB to enhance their performance. If the serving
eNB is becoming overloaded, some UEs, despite good
coverage, will need to switch to other eNBs for a better
service and a lower delay.

3) Optimize EPS bearer rate: Evolved Packet System (EPS)
bearer is defined with certain data rate according to
the QoS parameters: GBR, Maximum Bit Rate (MBR),
Aggregated Maximum Bit Rate (AMBR) and QCI. For
GBR type applications (e.g., VoIP) which requires a con-
stant data rate, the data rate is controlled via the GBR
parameter. For non-GBR applications, such as video
and best effort Internet (BE), which require a variable
amount of bandwidth, the traffic is controlled by the
aggregated maximum data rate (AMBR). Utilizing these
data rates parameters, we can optimize the resources
allocated in terms of deciding the optimum bearer rates
for different users dynamically according to their QoS
requirements.

V. APPROACH TO INTELLIGENT RAN CONTROL

In this section, we present the underlying network slicing
scheme, the formulation of ICRAN as a deep reinforcement
learning problem and its two architectures: ICRAN-C and
ICRAN-D.

A. RAN Slicing Model

The allocation of radio resources to slices according to their
requirements is a fundamental part of network slicing that is

2756 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

usually executed at RAN. In line with the works [22], [23]
discussed in Section III-A, we build our adaptive RAN slic-
ing scheme (see Figure 2) by modifying the existing MAC
scheduler and implementing a hierarchy of schedulers. Note
that the LTE MAC scheduler is responsible for allocating
radio resources to UEs. The frame structure of the downlink
air interface contains ten subframes of 1ms each, which is
also the transmission time interval (TTI). Besides the slice
scheduler, our slicing model comprises a slicing orchestrator
that determines the assignment of RBs to slices and instruct
the scheduler to execute that based on the operator policy. It
informs the scheduler of which slice to schedule at the current
subframe based on the QCI value. If the scheduled slice has
no data to transfer, the slice with the highest priority and data
waiting to be transferred will be scheduled. The slice sched-
uler determines the slice priority based on the QoS constraints
provided by the EPS bearer, which is associated with the QCI.
Furthermore, the slice scheduler receives a set containing the
buffer status of all UEs for each slice to determine the amount
of data to be transferred. Within each slice, RBs are assigned
to UEs using a conventional MAC scheduler that implements
the proportional fair scheduling algorithm [44]. Our control
algorithm extends this slicing scheme by adding a layer that
manipulates coverage and resource allocation in response to
network dynamics and performance degradation.

B. DRL Problem Formulation

We use deep reinforcement learning as a candidate solution
for our problem, because DRL can accommodate the com-
plexity of network dynamics. The future mobile networks are
large-scale and complex in the sense of supporting diverse
use cases which results in large state and action spaces, and
the conventional control methods may not be able to find
the optimal decision in reasonable time. Thus, we present the
ICRAN framework based on DRL environment that comprises
the real-time state of all eNBs and UEs in our slicing network.
The ICRAN agent (or a set of agents) monitors the status of
the eNBs including the attached UEs and network performance
indicators. Based on the obtained information, the agent makes
a decision whether to increase the antenna coverage, distribute
the traffic loads or adjust the data rate for a specific slice to
maximize the overall network performance and minimize SLA
violations. The decisions are made at each control interval. The
value of the control interval depends on time needed to exe-
cute the actions in the environment. The environment returns
a reward, which is calculated depending on the QoS and the
network efficiency, and then a new decision process will be
activated. In this work, we formulate this problem in two dif-
ferent architectures based on the control level: 1) single agent
DRL (i.e., centralized control) and 2) multi-agent DRL (i.e.,
decentralized control).

Formally, our centralized control problem is MDP, which
is modeled as a 4-tuple 〈S ,A, r ,P〉, where S is the state
space, A denotes the action space, r represents the reward
function and P is the state transition probability for state
s and action a. The state space involves the state of M
eNBs and all users connected to them. The agent relies on

the policy π to select actions for RAN control to maximize
the reward. The task of DRL is to find the optimal policy
π∗ : S → P(A) that maximize the expected return. The return
from a state s is defined as the sum of discounted future reward
Rt =

∑T
i=t γ

i−tr(si , ai) with a discounting factor γ ∈ [0, 1].
A deterministic policy returns actions to be taken in each per-
ceived state, while the stochastic policy returns a distribution
over actions. We define the Q-function, which measures the
expected accumulated rewards under policy π as shown below:

Qπ(st , at) = Eri≥t ,si>t∼E,ai>t∼π[Rt | st , at] (1)

According to the Bellman equation, the relation between the
Q-function and the immediate reward can be formulated as:

Qπ(st , at) = Ert ,st+1∼E[r(st , at)

+ γEat+1∼π[Q
π(st+1, at+1)]

]
(2)

We elaborate on the algorithm we choose to maximize this
Q-function later in this sequel.

For the decentralized architecture, we extend the MDP for-
mulation to the multi-agent setting taking into account the
communication between agents [45]. We define our problem
as a partially observable Markov game (POMG) for M agents
comprising of a set of states S that contains the possible
information of all agents, a set of actions A and a set of obser-
vations O for each agent. At each time step t, each agent takes
an action a(t) based on state s(t), moves to new state s(t + 1),
receives a new observation o(t + 1), and finally receives an
immediate reward r. Similar to the MDP model, the agent
in POMG also aims to find the optimal policy in order to
maximize its expected long-term discounted reward.

Next, we elaborate on the details of our formulation.
1) State Space: The RAN controller works as an agent

interacting with the network environment at every time step t.
The state of the i-th eNB at time step t, si (t), is given by:

si (t) = [DT (t),Th(t),UES1(t),UES2(t),UES3(t)] (3)

where DT(t), Th(t) are the antenna downtilt and average
throughput for the eNB respectively. UES1,UES2,UES3 are
three vectors representing the identifiers for the UEs attached
to eNB from three slices S1,S2,S3. For each UE in one of
these three list, we use the Flow Monitor module in ns-3 to
track its throughput and end-to-end delay at each time step.

2) Action Space: The action space is a vector A represent-
ing our control levers: antenna tilt optimization, traffic load
balancing and traffic shaping.

• Antenna tilt optimization. For each antenna this action
is defined by three discrete variables: [a−λ, a0, a+λ]
down-tilt, no change, up-tilt the current down-tilt of mag-
nitude λ. The minimum downtilt angle is 1◦ and the
maximum is 14◦. These are chosen to avoid excessive
uptilt/downtilt [46].

• Handover: This action handovers a specific user from a
specific slice from the current eNB to a nearby eNB.
eNBs in LTE are interconnected with the X2 interface.
If two eNBs are served by the same MME, a handover
from the source to the target eNB will take place over the
X2 interface. Only one UE at a time is requested to be

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2757

handed over. To maximize chances of handover success,
the choice of the UE depends on the UE measurement
report which contains RSRP and RSRQ values. The eNB
evaluates neighboring eNBs as potential handover targets
for this specific UE. The action space related to actions
that optimize the traffic load for eNBs, consists of three
discrete actions: [aH (UES1), aH (UES2), aH (UES3)] which
represent the handover of UEs from slices S1,S2, and S3,
respectively.

• Adjust the EPC data rate for best-effort users. To mini-
mize the SLA violations for high priority UEs, we can
reduce the aggregated maximum bit rate (AMBR) for
best-effort UEs. This action is represented by [rS3] which
is a continuous value for AMBR. We can change the rate
for only one user from UES3 at time t.

This results in a hybrid (parameterized) action space; discrete
actions and continuous actions. To unify the action space, we
relax the discrete actions into a continuous space using the
method defined in [47]. We consider the following parame-
terized action space: the discrete actions are selected from a
finite set Ad = {a1, a2, . . . , ak}, and each a ∈ Ad has a set
of real valued continuous parameters Xa ⊆ R. Hence, a com-
plete action is represented as a tuple (a, x), where a ∈ Ad is
the chosen discrete action and x ∈ Xa is the chosen parameter
to execute with action a. The whole action space A is then the
union of each discrete action with all possible parameters for
that action:

A =
⋃

a∈Ad

{(a, x)|x ∈ Xa} (4)

Our DRL approach outputs a value for each of the discrete
actions, concatenated with all continuous parameters, and the
discrete action is chosen to be the one with the maximum
output value.

Note that the previous work only considered a single cate-
gory of actions, which resulted in limiting them to solving a
single control problem.

3) Reward Function: The reward function is defined to
guide the agent/agents to make desirable decisions in order
to realize the objective of the system. Here our objective is
twofold: network throughput maximization and SLA violations
minimization. In response to the first objective, we include the
instantaneous sum of the throughput for all M eNBs as the first
term in Eq. (6). To achieve the second objective, we penal-
ize the agent for any SLA violation for UEs in the system as
defined below in Eq. (5) and presented as second term in the
reward function.

pn(t) =

{
0, if dn(t) ≤ Dn ∧ tn (t) ≥ Tn

−1, otherwise (5)

where dn(t), tn (t) represent the end-to-end delay and
throughput for UE n ∈ [1..N] respectively. Dn ,Tn are the
violation threshold of latency and throughput defined for each
slice in Table I. For example, if the end-to-end delay for a VoIP
UE is above 100ms at time t, we consider this as a violation.

To this end, we set the reward at each time step t as

log

M∑

i=1

Thi (t) + σ

N∑

n=1

pn(t) (6)

Algorithm 1 ICRAN-C Training Based on DDPG
1: Randomly initialize actor network μ and critic network Q

with parameters θμ and θQ respectively.
2: Initialize target actor network μt and target critic network

Qt with parameters θμt = θμ and θQt = θQ , respectively.
3: Initialize a replay buffer R with a capacity C and threshold

T .
4: for episode = 1, . . . ,K do
5: Receive initial observation state s0
6: for t = 1, . . . ,T do
7: Select action at = μ(st) + η according to the

current policy θμ and exploration noise η.
8: Execute action at and observer reward rt and new

state st+1

9: if SizeofR > T then
10: Sample a random minibatch of N transitions:

N = R.sample(< si , ai , ri , si+1 >)

11: Set yi = ri + γQ
′
(si+1, μ

′
(si+1|θμ′

)|θQ ′
)

12: Update critic Q by minimizing loss function:

L =
1

N

∑

i

(yi −Q(si , ai |θQ))2

13: Update the actor μ by applying policy gradient:

∇θμJ ≈
1

N

∑

i

∇aQ(s , a|θQ)|s=si ,a=μ(si)∇θμμ(s |θμ)|si

14: Update target networks:

θQ
′ ← τθQ + (1− τ)θQ

′

θμ
′ ← τθμ + (1− τ)θμ

′

15: end if
16: end for
17: end for

We use both log function and σ, which is a positive weight,
to balance between the two objectives.

C. ICRAN-C via Single-Agent DRL

In the single-agent DRL setting, owing to our continuous
action space, we choose the widely used DDPG algorithm
to find the optimal policy. DDPG is specifically adapted for
problems with a continuous action space [48], unlike the DQN,
which only works in environments with a discrete action space.
DDPG is a model free algorithm because the agent cannot
predict the future states of the environment without taking the
action. Besides, it is an off-policy method because the pol-
icy used to improve the Q-function approximation is different
from the behavior policy, used to explore the environment.

We list in Algorithm 1 the DDPG algorithm we use for
training the agent. DDPG follows a critic-actor approach [49],
in which an actor algorithm tries to output the best action and
a critic tries to predict the value function for this action. The
DDPG algorithm maintains a parameterized actor function μ to
specify the current policy by deterministically mapping states

2758 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

to a specific action. The critic Q is learned using the Bellman
equation. First, we initialize all of the critic Q and the actor
networks μ with random values of θμ and θQ respectively.
Then, we start our iterative training process (Line 4). The critic
network is trained to simulate the real Q-table using neural
networks. The actor network is trained to generate a deter-
ministic policy instead of the policy gradient which chooses a
random action from a determined distribution. For computing
optimization, the algorithm is learning in minibatches, rather
than online, therefore we initialize a replay buffer R with fixed
size in Line 3. Moreover, the replay buffer is used to store the
transitions that are sampled from the environment according to
the exploration policy and the tuple <si , ai , ri , si+1> in Line
10. When the replay buffer is full the oldest samples are dis-
carded. Within each time step t, we select an action according
to the policy μ with a certain random noise (η) and we execute
it as an exploration to find the best solution(Line 7). We store
the transition in the replay buffer R (Line 10) accordingly. Note
that in the forward pass, we compute a loss function (Line 12)
to update the critic by minimizing such loss over the chosen
random transition i chosen from the replay buffer R. We also,
update the policy μ using policy gradient (Line 13), through
the soft-update of the policy and critic parameters θQ and θμ

respectively (Line 14).

D. ICRAN-D via Multi-Agent DRL

Multi-Agent Reinforcement Learning (MARL) involves
using several agents at the same time. The simplest approach
in multi-agent settings is to use agents that learn and act inde-
pendent of each other. We attempted this approach, by having
an agent per eNB, but it did not perform well and was gen-
erally unstable. This happened because each agent’s policy
changes during training, resulting in a non-stationary envi-
ronment. In other words, a policy change by an agent will
influence the policy of the other agents and hence the lack
of coordination will lead to conflicting policies. For exam-
ple, handover actions produce ping pong effects and antenna
tilt optimization actions produce coverage holes. Accordingly,
we need to enable the agents to communicate their actions
to each other. We have therefore formulated our distributed
control problem as a cooperative multi-agent DRL problem,
where the agents interact with each other, and their reward
depends on their joint behavior. Knowing the actions taken
by all agents makes the environment stationary even when
policies change.

The training of multiple agents has long been a computa-
tional challenge. Since the complexity in the state and action
space grows exponentially with the number of agents, even
modern deep learning approaches may reach their limits [43].
If the training of agents is applied in a centralized manner, all
information such as actions, observations and rewards from
all gents should be sent to a centralized unit. In contrast to
the centralized scheme, the training can also be handled in a
distributed fashion where each agent performs local updates
on and develops an individual policy without utilizing foreign
information and this approach is infeasible in our work due to
the non-stationarity problem. Therefore, we recognize another

Algorithm 2 ICRAN-D Training Based on MADDPG
Algorithm for M eNBs

1: Initialize a replay buffer R with a capacity C and threshold
T .

2: for episode = 1, . . . ,K do
3: Initialize a random process N for action exploration
4: Receive initial observation state x
5: for t = 1, . . .,max-episode-length do
6: for each eNB i Select action ai = μ(si) + η

according to the current policy θμ and exploration
noise η.

7: Execute actions a = (a1, . . . , aM) and observe
reward r and new state x ′

8: Store (x , a, r , x ′) in replay buffer R
9: x ← x ′

10: for eNB i = 1, . . . ,M do
11: Sample a random minibatch of N transitions:

N = R.sample(< x j , aj , r j , x
′j >)

12: Set y j = r
j
i + γQ

μ′
i (x

′j , a
′
1, . . .,

a
′
M)|

a
′
k=μ

′
k (s

j
k)

13: Update critic Q by minimizing loss function:

L =
1

N

∑

j

(y j −Q
μ
i (x

j , a
j
1, . . . , a

j
M))2

14: Update the actor μ by applying policy gradient:

∇θμJ ≈
1

N

∑

i

∇aQ(s , a|θQ)|s=si ,a=μ(si)∇θμμ(s |θμ)|si

15: end for
16: Update target networks for each eNB i :

θ
′
i ← τθi + (1− τ)θ

′
i

17: end for
18: end for

training scheme adopted by [50], [51]; a centralized training
and a decentralized execution. This approach assumes the exis-
tence of a centralized controller that collects extra information
about the agents to ease training but not used during the normal
operation of the system.

To realize the multi-agent proposal, we adopt the Multi-
agent DDPG framework (MADDPG) that was proposed by
OpenAI in [50]. MADDPG extends DDPG into a multi-agent
policy gradient algorithm where decentralized agents learn a
centralized critic based on the observations and actions of all
agents. Each agent has local information and local policies
to train, but the centralized critic advises the agents on how
to update their policies. The critic is augmented with extra
information about the policies of other agents which loosen
the non-stationarity of the environment. After the training is
completed, the centralized critic is no longer needed; only
the local actors are used in the testing phase. Here in algo-
rithm 2, we consider a system with M agents, which represents
eNBs, with policies parameterized by θ = {θ1, . . . , θM },

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2759

and let π = {π1, . . . , πM } be the set of agents’ policies.
Qπ
i (x , a1, . . . , aM) is a centralized Q-function that takes as

input the actions of all agents, a1, . . . , aM , in addition to some
state information x, and outputs the Q-value for agent i. In our
problem, x consists of the state space of either all eNBs or only
the neighbouring eNBs (agents) to reduce the communication
overhead. The first lines in the algorithms (1-7) are for param-
eters initialization and exploration. MADDPG uses a replay
buffer to store the agent transitions (x , a, r , x ′) (Line 8). Then,
a batch of these transitions is sampled from the experience
replay to train agent i (Line 11). Line 13 is used to update an
agent’s centralized critic by minimizing the loss function. Note
that the centralized critic uses joint information to update its
parameters. Similar to DDPG in algorithm 1, MADDPG uses
the deterministic policy gradient to update each of the agent’s
i actor parameters (Line 14). We take the gradient with respect
to the actor’s parameters using a centralized critic as guidance
as shown below:

∇θi J (θi) = Es∼pµ,ai∼πi
[∇θi logπi (ai |si)Qπ

i (x , a1, . . . , aM)]

(7)

The most important thing to notice is that even though the
actor only has local observations and actions, the use of a cen-
tralized critic during the training phase provides information
about the optimality of the agent’s actions for the entire
system.

E. Complexity Analysis

The complexity and implementation overhead should be
kept low. This overhead may arise due to excessive signal-
ing associated with exchange of data between ICRAN and
the environment. In ICRAN-C, we assume that the network
state is fully observable by the agent. During every step exe-
cution ICRAN-C collects the current state of all M eNBs
in the network which results in communication overhead of
O(M). In contrast, in ICRAN-D which is based on multi-
agent DRL, we assume that the agents are communicating
with each other to reach the final goal simultaneously. We pro-
pose two ways of coordination between the multiple agents;
1) exchanging information with all eNBs in the system; thus
the signaling overhead for each agent isO(M−1). 2) exchang-
ing information with nearby Ḿ eNBs (Ḿ << M), here the
signaling overhead for each agent is O(Ḿ − 1). In addition
to the eNB information such as antenna tilt and transmitted
power, the exchanging information also contains a list of UEs’
performance (i.e., throughput and delay) and their slicing pro-
file. Hence, the size of the message between the eNB and the
DRL agent in both ICRAN-C and ICRAN-D is O(P) where
P represents the number of UEs associated with an eNB. This
corresponds to a few megabytes of data for an eNB serving a
million UEs.

VI. EXPERIMENTAL SETUP

For our experiments, we used the well known ns-3 network
simulator. For the reinforcement learning we used OpenAI
Gym, which is a toolkit for developing RL algorithms. To inte-
grate our network environment with Gym, we used ns3-Gym

Fig. 3. Experimental Setup.

framework [52] which simplifies exchanging observations,
actions and rewards between the RL agent and the network
environment (See Figure 3). We implement two different
architectures for ICRAN as shown in Figure 4.

A. Network Environment

We evaluated our proposed framework in an environment
consisting of 19 eNBs shown in Figure 4. We divided users
evenly amongst the three slices in use: VoIP, video and best-
effort. Further, we simulated VoIP using an ON/OFF model;
ON is the time when users are speaking and OFF is the time
when the users are not. We set the On-Time and Off-Time to
0.352 seconds and 0.650 seconds, respectively, to ensure a bit
rate of 64 Kbps. The video traffic was simulated using Evalvid
module1 which streams video frames. Finally, we setup the
best-effort application using the UDP echo module in ns-3.
The VoIP traffic was mapped to QCI 1, the video traffic was
mapped to QCI 7 and the best-effort traffic was mapped to
QCI 9 and each user received traffic from only one applica-
tion. Users exchange traffic with end points outside the mobile
networks (i.e., the remote hosts in Figure 1).

The arrival of users of each slice S followed a Poisson pro-
cess with an arrival rate of λ = 5 users/S/eNB throughout the
coverage area of the cell. 50% of the users were stationary,
25% were vehicular users moving with an average speed of
30 km/h and the rest 25% were walking at 0.8 m/s. Table II
summarizes the simulation parameters.

B. Simulation Scenarios

For our evaluation, we considered two specific scenarios
that capture extreme network conditions to help assessing the
effectiveness of the proposed control mechanism.

1) Network Congestion: When the required resources by
all the slices are less than the resources provided by the

1https://gitlab.com/gercom/evalvid-ns3

2760 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 4. High-Level architecture for ICRAN including the network topology: a) ICRAN-C: a centralized single-agent receives a state from each eNB and
chooses an action to perform to get the reward. b) ICRAN-D: partially decentralized multi agents controllers; each agent is associated with an eNB with some
communication between the agents.

TABLE II
SIMULATION PARAMETERS

network, the decision making by the controller is easy.
Therefore, we choose high network loads scenarios that require
from the controller to obtain a complete image of the network
and make intelligent decisions to achieve high end-to-end
performance while minimizing SLA violations.

2) Network Failure: In this scenario, we generate some
cell faults during the simulation to evaluate whether the
proposed control mechanism can adapt quickly to the
changes. Specifically, we randomly assign faults like excessive
uptilt/downtilt to one cell. Excessive uptilt/downtilt is sim-
ulated using extreme values for the antenna downtilt which
are [0, 1]◦ for excessive antenna uptilt and [16, 15, 14]◦ for
excessive antenna downtilt.

C. Reinforcement Learning Setup

In this experiment, inspired by the work in [48], we
used fully connected neural networks to implement the actor
and critic of DDPG and MADDPG that we describe in
Algorithms 1 and 2. For the actor network, we use one input
layer, two hidden layers and one output layer. The neuron
numbers for these layers are 16, 64, 32, 8, respectively. The
critic network comprises a one input layer, one hidden layer
and one output layer with neuron numbers of 24, 64, 1, respec-
tively. For the single agent training, we set the learning rate of
actor and critic in Algorithm 1 to 0.0001 and 0.001, respec-
tively. While for multi-agent training, we use learning rate of

TABLE III
HYPER-PARAMETERS FOR ICRAN

0.0005 and 0.001 for actor and critic networks in Algorithm 2.
Additionally, for both the DDPG and MADDPG algorithms,
we sample after every other 100 timesteps, and sample a batch
size of 32 by episode using replay buffer size of 10000. We
set τ , soft update of target, to 0.01, and the discount fac-
tor γ to 0.99 , which places more focus on the immediate
reward. To balance the two components of the reward func-
tion we use σ = 1.25. In order to find suitable values for the
hyper-parameters, we start with the original values proposed in
[48], [50]. Then through extensive simulations and grid search,
we adjusted some of the values based on the performance
of the algorithms. All these parameters are summarized in
Table III.

VII. PERFORMANCE EVALUATION

A. Overview of the Evaluation

ICRAN is evaluated based on whether it achieves a network
performance that satisfies the SLA requirements for slices
while maximizing radio resource utilization. We conduct four
stages of evaluation. The first stage looks at the training phase
of ICRAN and its convergence performance (Section VII-B).
The second stage investigates the decisions taken by the
ICRAN agent to minimize the number of SLA violations after
training and why ICRAN outperforms other decision-making
approaches (Section VII-C). In the third stage, we compare
ICRAN to some baselines and state-of-the-art methods in
terms of physical resources utilization and SLA satisfaction
(Section VII-D and Section VII-E). Finally, we study the
generalized performance of ICRAN in terms of throughput and

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2761

Fig. 5. The average accumulated reward that is achieved by ICRAN-C,
Greedy and Random approaches. The envelope shows standard deviation.

delay under different levels of network load (Section VII-E).
Every scenario in this section is simulated 50 times.

B. Training Performance

We compare the average reward and convergence
performance of the ICRAN-C to those of a random and a
greedy methods. The random method selects actions in the
action space in a uniformly random fashion. The greedy algo-
rithm picks the best action without taking into consideration
the long-term effect of that decision. It essentially measures
the immediate impact of taking an action on throughput and
SLA violations. Then updates a state action table to track
how effective an action is. To add some randomness, which
allows the algorithm to explore the action space, we use
an epsilon-greedy algorithm which adds randomness when
deciding between actions. The algorithm chooses the action
randomly with a probability ε which will make the algorithm
explores other actions as well. Most of the time, the algorithm
selects the best action which result in a high reward with
probability 1 − ε. We try different values for ε and choose
0.1, which results in the best reward. Figure 5 shows that
the ICRAN-C achieves a significantly higher reward than the
other two alternatives. Reaching this reward level happens rel-
atively fast, after 500 training episodes. We also note, unlike
for the other two strategies, that the achieved reward exhibits
low variability.

In Figure 6, we plot the average reward for the ICRAN-D.
Here, we compare two learning methods. In the first method,
the centralized critic uses information from all agents (red
curve), while in the second learning method it uses only
information from adjacent agents (blue curve). We observe
a negligible difference between the two training approaches
in our simulation scenario which has 19 eNB. However, we
believe a larger network topology can capture the difference
between the two learning methods. There are two differences
between ICRAN-D and ICRAN-C. The former takes 4x the
time the latter takes to converge. This difference holds, even
if we change the learning rate. Further, the average reward of
ICRAN-D is slightly lower but clearly higher than the greedy
and random strategies.

Fig. 6. The average reward of ICRAN-D for two different learning methods
in the training. Method 1: Critic network of any agent receives all policy
information of all agents in the system. Method 2: Critic network of any
agent only receives policy information of nearby agents in the system. The
envelope shows the standard deviation.

C. Why Does ICRAN Outperform Other Methods?

ICRAN clearly achieves a higher reward compared to the
greedy approach, which resembles the way a human operator
would behave. Thus, it is important to understand the strategies
that ICRAN follows to achieve this. To this end, we explore
the way ICRAN and the greedy approaches behave under three
different scenarios. A scenario is a single simulation snapshot,
that is one realization, that lasts 20 time steps. Considering a
single realization helps in gauging the impact of each action.
The three scenarios are an overloaded network, a failure of an
eNB in an overloaded network and a network that is loaded
slightly below its full capacity. For each scenario, we track
the actions that different approaches take and their impact on
reducing SLA violations.

For Snapshot 1 (see Figure 7a), which represents a network
congestion scenario with a network load level of 120%.
ICRAN-C (blue curve) is able to reduce the SLA violations
from 63 to 30, while the greedy algorithm (red curve) ends up
with 49 violations. As expected, there is a mismatch between
the actions taken by the two approaches. We observe that,
unlike the greedy approach, some of the actions that ICRAN-C
takes do not result in an immediate reduction in SLA viola-
tions. However, these actions lead to a significant drop in SLA
violations in the following time steps. An example of this is
the consecutive antenna tilt optimization, handover and data
rate adjustment actions that are executed at time steps 7, 8
and 9. In the second snapshot in Figure 7b, we simulate the
same network load level, i.e., 120% and at time step = 10 we
introduce a failure in one eNB. The number of SLA violations
jumps following the failure. The greedy algorithm handles this
situation by following a sequence of handover actions to move
the UEs attached to the failed eNB to nearby eNBs. This
strategy minimizes the SLA violations by one at each time
step. However, the ICRAN-C alternates between antenna tilt
optimization and handover actions. We can observe that data
rate adjustments actions are unlikely taken by ICRAN-C in
this situation. ICRAN-C’s strategy is to increase the coverage
of the nearby eNBs’ by adjusting their antenna tilt and at the

2762 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 7. Action strategies taken by ICRAN-C(blue) and the greedy algorithm (red) under three testing scenarios.

same time rely on the automatic handover that the LTE system
provides. This strategy helps ICRAN-C to mitigate the fail-
ure in a few time steps. Finally, the third scenario, which we
depict in Figure 7c, corresponds to a network that is loaded at
90%. Accordingly, an optimal control algorithm must be able
to ensure zero SLA violations. ICRAN-C indeed manages to
achieve that, while the greedy algorithm fails. The main reason
is that the greedy algorithm chooses to take the same action
sequentially through time steps as long as the SLA violations
decrease. This strategy leads to a slow decrease or increase in
the number of SLA violations.

Takeaways: ICRAN outperforms the greedy approach in
minimizing SLA violations. It achieves this by executing con-
trol actions that do not only focus on the immediate reduction
of SLA violations. Another aspect to ICRAN is its alterna-
tion between available control actions. This strengthens the
case for multi-action control strategies that prioritize long term
reward. Note that the greedy strategy resembles the manual
troubleshooting that is common in today’s networks.

D. Resource Utilization Efficiency

Having seen that ICRAN converges to finding optimal con-
trol sequences, we now turn to evaluating ICRAN in practice.
We check whether ICRAN can lead to an efficient resource uti-
lization in comparison to two default approaches that resort to
resource reservation and over provisioning. The first approach,
which we call Static Slicing allocates 50%, 40% and 10% of
the RBs to S1,S2 and S3, respectively. The traditional LTE
scheduler is then used to assign RBs within each slice. The
second approach, Dynamic Slicing, besides assigns RBs to
slices, it adaptively reassign RBs that are not used by a higher
priority slice to a lower priority one. Note that ICRAN com-
bines dynamic slicing and DRL (see Section V). Moreover,
we compare ICRAN against two recent works from state-
of-the-art. We choose these methods because they employ
diverse approaches and have shown excellent performance in
RAN resources management among network slices. The first
work is DeepSlicing [25] that leverages a DRL algorithm,
namely DDPG, to allocate the radio resources to users within
a slice. For each slice there is a DRL agent that learns the
optimal policy of allocating resources to users by observing
the users’ utility. The agent is penalized if the minimum utility
requirement of users is not satisfied. Coordination of physical

resources among network slices is formulated as a quadratic
optimization problem aiming to maximize the sum-utility of
all network slices. We implement and simulate DeepSlicing in
our ns3 environment setup in Section VI; we implement three
DDPG agents; each for each slice to allocate the resources
to users in the network slice, i.e., action space. The reward
function is penalizing the DDPG agent if the minimum utility
requirement of the users is not satisfied. On the top of the
DDPG agents, we solve the slices coordinating problem as a
quadratic programming using the optimization tool CVXPY2

which is an open source Python-embedded library for convex
optimization problems. We train the three DDPG agents on one
eNB until convergence, and then use them in all eNBs during
inference. The second work is TNSM-21 [24] which is a data-
driven resource management method to support RAN slicing.
Based on monitoring RAN information namely, CQI reports
collected from the base stations, they calculate the amount of
physical resources to allocate per slice to meet the target KPIs.
Similar to our proposed slicing model in Section IV, in this
work the authors presented a slice orchestrator that is responsi-
ble for managing slices. Based on the UE channel quality from
the CQI report, the slice orchestrator translates the CQI to the
maximum data rate per RB based on [53]. Two different algo-
rithms are being proposed for the calculation of the number of
RBs per slice based on the slice requirements. For guaranteed
latency slice, the number of RBs are calculated based on the
queue model M/M/1/K to estimate the latency of the pack-
ets. Beside, the average packet size of the latency-constrained
application and the maximum data rate provided by one RB,
we can calculate the number of RB for this slice. For through-
put guaranteed slice, the number of RBs is equal to (or greater
than) the aggregate data rate needed by the slice for all users.
We implement this algorithm in our slice orchestrator without
implementing CQI overhead optimization method defined in
this work. We frequently monitor the CQI value for users and
map it to the maximum data rate for RB. However, we add
additional case to the algorithm to cover the third best-effort
slice, which assigns the remaining resource blocks to this slice.

Figure 8 shows the fraction of utilized RBs by each
approach under different levels of network load. Both static
and dynamic slicing achieve lower RBs utilization compared

2https://www.cvxpy.org/

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2763

Fig. 8. Resource blocks utilization under different levels of network load.

with other methods. As expected dynamic slicing outperforms
static slicing, which fails to fully utilize available resources
even at lower levels of load due to its rigidity. TNSM-21 shows
improvement in RBs utilization efficiency over dynamic slic-
ing because it allocates only the required number of RBs that
satisfy the slice requirements. However, because the RBs are
reserved, they are not actually used until needed, thus there
is room for improvement. DeepSlicing outperforms all meth-
ods at low network loads, i.e., 50%, 75% and 100% because
it optimizes the RBs between the slices besides the resources
allocation to individual users within the slice. The difference
between DeepSlicing and ICRAN is marginal though. In a
highly congested network, i.e., 200% load, ICRAN-C results
in 97% median RBs utilization efficiency, which is higher than
DeepSlicing’s. This is because ICRAN-C attempts to perform
a network-wide optimization rather than local optimization.
DeepSlicing outperforms ICRAN-D, as the latter lacks the
overall view of the network compared to ICRAN-C.

Takeaways: The DRL-based methods clearly outperforms
the other non-DRL method. DeepSlicing and ICRAN-C
demonstrate a comparable efficiency with DeepSlicing leading
at lower network load (i.e., 100% or less) values and ICRAN-C
leading at extreme levels of load, which is more challenging.

E. Minimization of SLA Violations

We took a closer look at the performance of ICRAN in
minimizing the number of SLA violations. The two panels in
Figure 9 show the number of SLA violations for the top two
slices in terms of priority (Slice1, Slice2) achieved by differ-
ent methods for different levels of network congestion. The
basic slicing methods, i.e., static and dynamic demonstrate a
poor performance in minimizing the number of SLA violations
because they do not consider satisfaction of the slice require-
ments, when allocating RBs to a slice. However, we observe
that DRL-based methods, namely ICRAN-C, ICRAN-D and
DeepSlicing outperform TNSM-21 for both slices because this
approach does not leverage any domain knowledge about the
nature of the available actions, the system’s state transition
dynamics, and its reward function. Therefore, TNSM-21 can
only allocate the minimum resources calculated by the algo-
rithm and serve accordingly a specific number of users in
Slice1 and Slice2. Overall, ICRAN-C and ICRAN-D consis-
tently outperform DeepSlicing. This difference becomes more
remarkable as the network load increases. For example, when
the network is 200% loaded, DeepSlicing results in 64% and
59% higher SLA violations in Slice1 compared to ICRAN-C

Fig. 9. Number of SLA violations, when using ICRAN-C, ICRAN-
D, DeepSlicing and TNSM-21, as network load varies for (a) Slice1 and
(b) Slice2.

and ICRAN-D, respectively. The is because of the large action
space for ICRAN. While ICRAN is giving priority to Slice1,
DeepSlicing is treating both slices equally based on their
defined SLA. However, ICRAN-C outperforms ICRAN-D in
reducing the number of SLA violations, this is mainly due
to the design of ICRAN-C which has a full observability of
the network, while ICRAN-D has a partial observability where
agents have access only to information of nearby eNBs. While
the difference is generally small, both approaches respect the
priority of slices. We note the trade-off between achieving
efficient resource utilization and the minimization of SLA vio-
lations. ICRAN succeeds in achieving both, while DeepSlicing
focuses on the former, hence its slightly better performance
in RB utilization when the network is lightly to moderately
loaded. However, this better performance does not translate to
the best performance in terms of reducing SLA violations.

Takeaways: ICRAN outperforms the other methods in min-
imizing the number of SLA violations in Slice1 and Slice2
and considers the priority of the slices in allocating resources.
The remarkable SLA violations reduction of ICRAN can be
attributed to, (i) ICRAN incorporates the violation of slices’
SLA into the reward function, (ii) ICRAN optimizes for the
overall network which allows to utilize the physical resources
efficiently to minimize the number of SLA violations for the
whole network, and (iii) the larger action space that allows
for quickly finding a sequence of actions that strike a bal-
ance between quality assurance and resource utilization. This
confirms the need for a multi-objective reward function and a
larger action space.

F. Network Performance

We now proceed to quantify the throughput and delay expe-
rienced by users in different slices, when using ICRAN, static

2764 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

Fig. 10. Network performance under different levels of network load.

slicing, dynamic slicing, DeepSlicing and TNSM-21 as the
network load increases. Figure 10 shows the average user
throughput and average packet delay per slice for different
levels of network load along with the standard deviation. All
methods try to maintain a constant throughput for the VOIP
slice. However, ICRAN ensures both the highest throughput
of 0.143Mbps(±0.01) and lowest delay of 72ms(±9) when
the network load is 200% (see Figures 10a and 10d).

In the case of video traffic, as the network load increases, the
average user throughput for all methods falls (see Figure 10b).
For high network loads, ICRAN-C outperforms all approaches,
while DeepSlicing achieves a slightly higher throughput than
ICRAN-C when the number of users per slice is low. For
example, when the network load is 200%, ICRAN-C outper-
forms DeepSlicing by 20% in throughput. In contrast, when
the network load is 50%, Deepslicing results in 7% higher
throughput than ICRAN-C and 15% than ICRAN-D. This is
because DeepSlicing’s agent is awarded based on the maxi-
mum throughput per base station. The agent observes only the
corresponding base station and cannot recognize the state of
other base stations to take further actions when the network
is congested. TNSM-21 exhibits the same results as dynamic
slicing with little improvement. When looking at delay both
ICRAN approaches clearly outperform the other four methods
(see Figure 10e). When the network load is 200%, ICRAN
results in an average delay that is 200%, 116%, 100% and
79% lower than that of static slicing, dynamic slicing, TNSM-
21 and DeepSlicing, respectively. This is due to the reward
function defined in ICRAN which directly optimizes for both
throughput and delay.

Finally, for the best effort traffic, the average through-
put decreases linearly, for all methods, as the network load
increases from 50% to 125% (Figure 10c). ICRAN achieves
a higher throughput for load levels lower than 125%. The
throughput drops to a minimal level for load levels higher

than 125%. For ICRAN, this is expected, since it reduces the
data rate for best effort UEs to minimize the SLA violations
for high priority slices. TNSM-21 achieves lower through-
put regardless of the network load level, because the method
is designed to allocate RBs to throughput-constrained and
delay-constrained slices. The remaining RBs are allocated to
best-effort UEs. There are no differences in delay between
ICRAN and the other methods when the network is not loaded,
we however record a slight difference, in favor of ICRAN, as
the load increases (see Figure 10f). We also note that the ben-
efit from using ICRAN is not limited to high load cases. It
consistently delivers a better performance at all levels of load.

Takeaways: ICRAN demonstrates its superiority in network
performance in terms of throughput and delay for the different
slices. For VOIP traffic, all methods try to maintain a con-
stant throughput, however, both ICRAN approaches achieve
approximately 71%, 22%, 24% and 16% higher throughput
compared with static slicing, dynamic slicing, TNNSM-21 and
DeepSlicing when the network is overloaded. Also, ICRAN
ensures the minimum delay in VOIP slice. In video slice,
DeepSlicing shows a slight improvement in throughput over
ICRAN when the number of users is low. This is due to
DeepSlicing reward function that maximize for throughput at
the base station. However, when the number of user increases,
ICRAN performs better. For the delay, ICRAN results in
the minimum delay under different network loads. ICRAN
exhibits the same behavior for best-effort traffic.

VIII. DISCUSSION

Self-driving RAN: We have demonstrated that it is possi-
ble to develop a multi-objective automated control mechanism
for managing the performance in a multi-slice RAN. In the
course of this work, we have identified a number of key
insights that we believe are pertinent to efforts that aim to

AHMED AND ELMOKASHFI: ICRAN BASED ON DEEP REINFORCEMENT LEARNING 2765

realize a fully self-driving RAN. First, the key insight behind
ICRAN is that the success in achieving the control objec-
tives is due to the collective behaviour of all eNBs in the
network. This is evident when comparing ICRAN to slicing
methods and other recent works. We accordingly believe that
control strategies that depend on the joint decision instead of
the independent decisions of system components will be key
to realizing self-driving RANs. Second, ensuring an optimal
or near optimal network-wide control requires strategies that
look beyond the immediate reward. Considering several time
steps ahead helps avoiding actions that only result in local
optimization but lead to service degradation in other parts
of the network. Accordingly, heuristics and threshold-based
control approaches will always likely fail in ensuring such
optimality. Third, the success of ICRAN can also be attributed
to the design of the reward function and the use of three dif-
ferent types of actions, which are both novel. Our reward
function is able to guide the agent to the optimal decision
through exploration and exploitation of various actions from
different categories. The key takeaway point here is that a
multi-objective control requires a diverse set of actions and
reward functions that reflect that.

Implementation Consideration: Although, simulations con-
firm the effectiveness of ICRAN, it must be also practi-
cally implementable. In general, DRL does not make strong
assumptions about the target system, however, we have some
simulation-based assumptions, which we need to address in
the real implementation. For example, we need to define
the communication channels between the eNBs and the cen-
tralized agent in case of ICRAN-C and between the agents
in ICRAN-D. Such channels and the respective protocols
can be implemented as application level services to avoid
the need for adding them to the standards. We believe
that the O-RAN architecture, due to its flexibility, can ease
the task of implementing such protocols [54]. Furthermore,
ICRAN assumes the availability of detailed telemetry to
track the state of the network. Such telemetry does not
exist today but new approaches to telemetry like in-band
telemetry seem promising since they balance overhead and
utility [55].

Limitations and the way ahead: Even though ICRAN
has succeeded in achieving its aim to optimize the overall
network performance while satisfying the QoS requirements
in multi-slice RAN, we highlight a number of limitations and
enhancements that we plan to address in the future work. First,
to support the increasing heterogeneous services and complex
networks, we need to include other types of traffic with dif-
ferent patterns such as IoT. Second, we need to investigate
the impact of the control interval on ICRAN decisions. We
examine values of 1 sec, 5 secs and 10 secs, and decide to
use 10 secs since this matches the time needed for performing
our control actions. Shorter timings yielded poor performance
results. Another issue is that our topology is relatively small,
which may raise concerns about whether ICRAN can scale
to much bigger networks. We believe that our preliminary
results which have shown minimal differences between fully
and partial observability distributed learning approaches are
promising.

IX. CONCLUSION

In this paper, we have presented ICRAN, a novel control
framework for optimizing resources utilization while minimiz-
ing SLA violations in a multi-slice RAN. Inspired by the
remarkable achievements of deep reinforcement learning in
solving complex control problems in highly dynamic envi-
ronments such as mobile network, ICRAN comprises two
DRL-based architectures: centralized ICRAN and distributed
ICRAN. Through extensive simulations using ns-3, we have
confirmed the substantial advantages granted by ICRAN over
other slicing schemes and recent works in terms of resources
utilization and QoS assurance. ICRAN is, to the best of our
knowledge, the only framework that simultaneously addresses
multiple RAN problems.

REFERENCES

[1] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network
slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55,
no. 5, pp. 94–100, May 2017.

[2] “Network Automation: Efficiency, Resilience, and the Pathway to
5G.” MIT. [Online]. Available: https://www.technologyreview.com/s/
613533/network-automation-efficiency-resilience-and-the-pathway-to-
5g/ (Accessed: Nov. 10, 2021).

[3] A. G. Spilling, A. R. Nix, M. A. Beach, and T. J. Harrold, “Self-
organisation in future mobile communications,” Electron. Commun. Eng.
J., vol. 12, no. 3, pp. 133–147, 2000.

[4] N. Feamster and J. Rexford, “Why (and how) networks should run
themselves,” 2017, arXiv:1710.11583.

[5] L. Bonati, S. D’Oro, M. Polese, S. Basagni, and T. Melodia,
“Intelligence and learning in O-RAN for data-driven NextG cellular
networks,” IEEE Commun. Mag., vol. 59, no. 10, pp. 21–27, Oct. 2021.

[6] F. Vannella, G. Iakovidis, E. Al Hakim, E. Aumayr, and S. Feghhi,
“Remote electrical tilt optimization via safe reinforcement learning,” in
Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2021, pp. 1–7.

[7] Y. S. Nasir and D. Guo, “Multi-agent deep reinforcement learning for
dynamic power allocation in wireless networks,” IEEE J. Sel. Areas
Commun., vol. 37, no. 10, pp. 2239–2250, Oct. 2019.

[8] J. Mei, X. Wang, K. Zheng, G. Boudreau, A. B. Sediq, and
H. Abou-Zeid, “Intelligent radio access network slicing for service pro-
visioning in 6G: A hierarchical deep reinforcement learning approach,”
IEEE Trans. Commun., vol. 69, no. 9, pp. 6063–6078, Sep. 2021.

[9] Y. Kim and H. Lim, “Multi-agent reinforcement learning-based resource
management for end-to-end network slicing,” IEEE Access, vol. 9,
pp. 56178–56190, 2021.

[10] A. P. Iyer, L. E. Li, and I. Stoica, “Automating diagnosis of cellular
radio access network problems,” in Proc. 23rd Annu. Int. Conf. Mobile
Comput. Netw., 2017, pp. 79–87.

[11] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[12] “ns-3 Network Simulator.” [Online]. Available: https://www.nsnam.org/

(Accessed: Nov. 10, 2021).
[13] M. Iwamura, “NGMN view on 5G architecture,” in Proc. IEEE 81st

Veh. Technol. Conf. (VTC Spring), 2015, pp. 1–5.
[14] M. Richart, J. Baliosian, J. Serrat, and J.-L. Gorricho, “Resource slic-

ing in virtual wireless networks: A survey,” IEEE Trans. Netw. Service
Manag., vol. 13, no. 3, pp. 462–476, Sep. 2016.

[15] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck, “Network
slicing and softwarization: A survey on principles, enabling technolo-
gies, and solutions,” IEEE Commun. Surveys Tuts., vol. 20, no. 3,
pp. 2429–2453, 3rd Quart., 2018.

[16] S. Wijethilaka and M. Liyanage, “Survey on network slicing for Internet
of Things realization in 5G networks,” IEEE Commun. Surveys Tuts.,
vol. 23, no. 2, pp. 957–994, 2nd Quart., 2021.

[17] Y. Wu, H.-N. Dai, H. Wang, Z. Xiong, and S. Guo, “A survey of
intelligent network slicing management for industrial IoT: Integrated
approaches for smart transportation, smart energy, and smart factory,”
IEEE Commun. Surveys Tuts., vol. 24, no. 2, pp. 1175–1211, 2nd Quart.,
2022.

[18] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, Jan. 2015.

2766 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 3, SEPTEMBER 2022

[19] ETSI NFV, “Network functions virtualization: An introduction, bene-
fits, enablers, challenges & call for action,” Darmstadt, Germany, SDN
OpenFlow World Congr., White Paper, 2012.

[20] T. Taleb, A. Ksentini, and B. Sericola, “On service resilience in cloud-
native 5G mobile systems,” IEEE J. Sel. Areas Commun., vol. 34, no. 3,
pp. 483–496, Mar. 2016.

[21] “O-RAN: Towards an open and smart RAN,” Alfter, Germany, O-RAN
Alliance, White Paper, Oct. 2018.

[22] D. Nojima et al., “Resource isolation in RAN part while utilizing ordi-
nary scheduling algorithm for network slicing,” in Proc. IEEE 87th Veh.
Technol. Conf. (VTC Spring), 2018, pp. 1–5.

[23] R. Shrivastava, K. Samdanis, and A. Bakry, “On policy based RAN
slicing for emerging 5G TDD networks,” in Proc. IEEE Global Commun.
Conf. (GLOBECOM), 2018, pp. 1–6.

[24] S. Bakri, P. A. Frangoudis, A. Ksentini, and M. Bouaziz, “Data-driven
RAN slicing mechanisms for 5G and beyond,” IEEE Trans. Netw.
Service Manag., vol. 18, no. 4, pp. 4654–4668, Dec. 2021.

[25] Q. Liu, T. Han, N. Zhang, and Y. Wang, “DeepSlicing: Deep reinforce-
ment learning assisted resource allocation for network slicing,” in Proc.
IEEE Global Commun. Conf. (GLOBECOM), 2020, pp. 1–6.

[26] A. Abouaomar, A. Taik, A. Filali, and S. Cherkaoui, “Federated learning
for RAN slicing in beyond 5G networks,” 2022, arXiv:2206.11328.

[27] N. C. Luong et al., “Applications of deep reinforcement learning in
communications and networking: A survey,” IEEE Commun. Surveys
Tuts., vol. 21, no. 4, pp. 3133–3174, 4th Quart., 2019.

[28] A. Feriani and E. Hossain, “Single and multi-agent deep reinforcement
learning for AI-enabled wireless networks: A tutorial,” IEEE Commun.
Surveys Tuts., vol. 23, no. 2, pp. 1226–1252, 2nd Quart., 2021.

[29] L. Lei, Y. Tan, K. Zheng, S. Liu, K. Zhang, and X. Shen, “Deep
reinforcement learning for autonomous Internet of Things: Model, appli-
cations and challenges,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 1722–1760, 3rd Quart., 2020.

[30] C. She et al., “A tutorial on ultrareliable and low-latency communica-
tions in 6G: Integrating domain knowledge into deep learning,” Proc.
IEEE, vol. 109, no. 3, pp. 204–246, Mar. 2021.

[31] F. Tang, Y. Kawamoto, N. Kato, and J. Liu, “Future intelligent and
secure vehicular network toward 6G: Machine-learning approaches,”
Proc. IEEE, vol. 108, no. 2, pp. 292–307, Feb. 2020.

[32] H. Zhu, Y. Cao, W. Wang, T. Jiang, and S. Jin, “Deep reinforce-
ment learning for mobile edge caching: Review, new features, and open
issues,” IEEE Netw., vol. 32, no. 6, pp. 50–57, Nov./Dec. 2018.

[33] A. M. Seid, G. O. Boateng, B. Mareri, G. Sun, and W. Jiang, “Multi-
agent DRL for task offloading and resource allocation in multi-UAV
enabled IoT edge network,” IEEE Trans. Netw. Service Manag., vol. 18,
no. 4, pp. 4531–4547, Dec. 2021.

[34] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning based
computation offloading and resource allocation for MEC,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.

[35] Y. Ren, A. Guo, C. Song, and Y. Xing, “Dynamic resource alloca-
tion scheme and deep deterministic policy gradient-based mobile edge
computing slices system,” IEEE Access, vol. 9, pp. 86062–86073, 2021.

[36] A. M. Seid, G. O. Boateng, S. Anokye, T. Kwantwi, G. Sun, and G. Liu,
“Collaborative computation offloading and resource allocation in multi-
UAV-assisted IoT networks: A deep reinforcement learning approach,”
IEEE Internet Things J., vol. 8, no. 15, pp. 12203–12218, Aug. 2021.

[37] J. Pérez-Romero, O. Sallent, R. Ferrús, and R. Agustí, “Knowledge-
based 5G radio access network planning and optimization,” in Proc. Int.
Symp. Wireless Commun. Syst. (ISWCS), 2016, pp. 359–365.

[38] “5G-Lena Module.” [Online]. Available: https://5g-lena.cttc.es
(Accessed Nov. 15, 2021).

[39] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, and J. Wang, “Large-scale mea-
surement and characterization of cellular machine-to-machine traffic,”
IEEE/ACM Trans. Netw., vol. 21, no. 6, pp. 1960–1973, Dec. 2013.

[40] A. Aghmadi, I. Bouksim, A. Kobbane, and T. Taleb, “A MTC traffic gen-
eration and QCI priority-first scheduling algorithm over LTE,” in Proc.
Int. Conf. Wireless Netw. Mobile Commun. (WINCOM), 2015, pp. 1–6.

[41] P. H. A. Rezende and E. R. M. Madeira, “An adaptive network slicing
for LTE radio access networks,” in Proc. Wireless Days (WD), 2018,
pp. 68–73.

[42] H.-S. Chuang, S.-L. Hsieh, and C.-F. Wu, “A channel-aware down-
link scheduling scheme for real-time services in long-term evolution
systems,” in Engineering Innovation and Design. Boca Raton, FL, USA:
CRC Press, 2019, pp. 337–343.

[43] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning:
A survey,” Artif. Intell. Rev., vol. 55, pp. 895–943, Apr. 2021.

[44] F. Capozzi, G. Piro, L. A. Grieco, G. Boggia, and P. Camarda,
“Downlink packet scheduling in LTE cellular networks: Key design
issues and a survey,” IEEE Commun. Surveys Tuts., vol. 15, no. 2,
pp. 678–700, 2nd Quart., 2012.

[45] M. L. Littman, “Markov games as a framework for multi-agent rein-
forcement learning,” in Machine Learning Proceedings. Amsterdam, The
Netherlands: Elsevier, 1994, pp. 157–163.

[46] A. Gómez-Andrades, P. Muñoz, E. J. Khatib, I. de-la Bandera, I. Serrano,
and R. Barco, “Methodology for the design and evaluation of self-
healing LTE networks,” IEEE Trans. Veh. Technol., vol. 65, no. 8,
pp. 6468–6486, Aug. 2016.

[47] M. Hausknecht, P. Mupparaju, S. Subramanian, S. Kalyanakrishnan, and
P. Stone, “Half field offense: An environment for multiagent learning
and ad hoc teamwork,” in Proc. AAMAS Adaptive Learn. Agents (ALA)
Workshop, 2016, pp. 1–7.

[48] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[49] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in Neural Information Processing Systems. Cambridge, MA,
USA: MIT Press, 2000, pp. 1057–1063.

[50] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,”
2017, arXiv:1706.02275.

[51] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to communicate with deep multi-agent reinforcement learning,” 2016,
arXiv:1605.06676.

[52] P. Gawłowicz and A. Zubow, “ns-3 meets OpenAI gym: The playground
for machine learning in networking research,” in Proc. 22nd Int. ACM
Conf. Model. Anal. Simul. Wireless Mobile Syst., 2019, pp. 113–120.

[53] LET; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Layer Procedures, V.15.2.0, Release 15, 3GPP standard TS 36.213,
Oct. 2018.

[54] A. Garcia-Saavedra and X. Costa-Pérez, “O-RAN: Disrupting the vir-
tualized RAN ecosystem,” IEEE Commun. Stand. Mag., vol. 5, no. 4,
pp. 96–103, Dec. 2021.

[55] L. Tan et al., “In-band network telemetry: A survey,” Comput. Netw.,
vol. 186, Feb. 2021, Art. no. 107763.

Azza H. Ahmed (Member, IEEE) received the mas-
ter’s degree from the University of Nottingham in
2012. She is currently pursuing the Ph.D. degree
with the Simula Metropolitan Center for Digital
Engineering, Oslo, Norway. Her research interests
include communication networks management and
control, network performance optimization, network
automation, and machine learning to solve networks
problems.

Ahmed Elmokashfi received the Ph.D. degree
from the University of Oslo in 2011. He is a
Research Professor with the Simula Metropolitan
Center for Digital Engineering in Norway. He
is currently working as the Head of the Center
for Resilient Networks and Applications, which is
part of the Simula Metropolitan Center, which is
funded by the Norwegian Ministry of Transport
and Communication. In particular, he focused on
studying resilience, scalability, and evolution of the
Internet infrastructure; the measurement and quan-

tification of robustness in mobile broadband networks; and the understanding
of dynamical complex systems. Over the past few years, he has been lead-
ing and contributing to the development, operation and management of the
NorNet testbed infrastructure, which is a countrywide measurement setup for
monitoring the performance of mobile broadband networks in Norway. His
research interests lie in network measurements and performance.

Article IV

Evang, J. M., Ahmed, A. H., Elmokashfi, A. and Bryhni, H. (2022, 26. July).
Crosslayer Network Outage Classification Using Machine Learning.
Applied Networking Research Workshop 2022 (ANRW’22).
DOI: https://doi.org/10.1145/3547115.3547193

https://doi.org/10.1145/3547115.3547193

Crosslayer Network Outage Classification Using Machine
Learning

Jan Marius Evang
marius@simula.no
SimulaMet, OsloMet

Oslo, Norway

Azza H. Ahmed
azza@simula.no

SimulaMet, OsloMet
Oslo, Norway

Ahmed Elmokashfi
ahmed@simula.no

SimulaMet
Oslo, Norway

Haakon Bryhni
haakonbryhni@simula.no

SimulaMet
Oslo, Norway

ABSTRACT
Network failures are common, difficult to troubleshoot, and small
operators with limited resources need better tools for troubleshoot-
ing. In this paper, we analyse two years of outages from a small
global network for high-quality services. Then, we develop a ma-
chine learning model for outage classification that can be set up
with little effort and low risk. We use passive Bidirectional Forward-
ing Detection (BFD) data to classify Layer2 problems and add active
packet loss data to classify other problems. The Layer2 problems
were classified with a 99% accuracy and the other problems with
40%–100% accuracy. This is a significant improvement when we
observe that only 35% of the customer cases we studied received
any Reason for Outage (RFO) response from the Customer Support
Centre.

CCS CONCEPTS
•Networks→ Public Internet;Networkmeasurement; •Com-
puting methodologies → Supervised learning.

ACM Reference Format:
Jan Marius Evang, Azza H. Ahmed, Ahmed Elmokashfi, and Haakon Bryhni.
2022. Crosslayer Network Outage Classification Using Machine Learning.
In Applied Networking Research Workshop (ANRW ’22), July 25–29, 2022,
PHILADELPHIA, PA, USA. ACM, New York, NY, USA, 7 pages. https://doi.
org/10.1145/3547115.3547193

1 INTRODUCTION
Today’s Internet comprises a group of small, medium, large and
extra large networks as far as geographic presence and traffic vol-
ume are concerned. The end-to-end network service is produced
following a three-layer model that is similar to the lower levels of
the OSI reference model [1].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9444-4/22/07. . . $15.00
https://doi.org/10.1145/3547115.3547193

Table 1: Manually classified causes.

Class Cause Count

MultiLoss Multiple Layer2 providers 870
CogentLoss Cogent’s network 556
Customer Customer’s equipment 411
TeliaLoss Telia’s network 316
Layer3 Layer3 only 222
InternMaint Internal maintenance 114
Optic 3dB Optical change 74
ProvMaint Provider maintenance 70
EquinixLoss Equinix Cloud Fabric 58
SubseaCable Subsea cable outages 42
EquipFail Equipment failure 40
FiberCut Fiber cut in provider network 39
Layer1 Leased Layer1 lines 18
Metro Metropolitan area links 18
DoS Denial of Service attacks 4

A few large providers sell Layer2 capacity based on the global
mesh of Layer1 optical fibres, which are used by Layer3 providers
to compose end to end services.

This layered architecture is exposed to various types of faults,
such as physical fiber faults, equipment faults, plannedmaintenance
and malicious attacks. Our data shows that the Layer1/Layer2 ser-
vice has a high number of faults (see Table 1). Smaller networks that
lease Layer1/Layer2 services need to quickly attribute such faults
and report them to the respective providers. This is important for
two reasons. First, it can help shorten the resolution time. Second,
faults must be reported during the incident to be acknowledged
according to the Service Level Agreements (SLAs).

Unlike large networks with sizable organization and abundant re-
sources, small and medium network operators have a much smaller
Network Operations Centre (NOC) with limited resources and staff.
A typical small-medium NOC either operates a single enterprise
network or is a speciality Internet Service Provider (ISP) provid-
ing a service to select customers in a narrow business area or in a
geographic area.

Smaller NOCs often have a small but highly demanding customer
base, for instance their co-workers in an enterprise, people in their

https://doi.org/10.1145/3547115.3547193
https://doi.org/10.1145/3547115.3547193
https://doi.org/10.1145/3547115.3547193
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3547115.3547193&domain=pdf&date_stamp=2022-08-17

ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA Evang et al.

own geographic area or specialized service providers. This makes
detecting and isolating faults very important yet a demanding task.

The NOC usually has automatic network monitoring systems
in operation, but they can suffer from large numbers of both false
positives (alerts without a real fault) and false negatives (faults
that do not generate an alarm). This often causes true positives
to be overlooked [2]. In an outage event where one component in
the network has failed, causing interruption to network traffic, an
overwhelming amount of log messages and alerts will be arriving
from different monitoring systems. This makes the NOC waste time
and effort to find the real cause. In other cases, a problemmay not be
noticed until customers complain. Customer Support (CS), may not
have enough information to respond to a customer case because the
NOC is busy troubleshooting. Alarm Consolidation systems exist
but they suffer from high complexity [3], narrow field [4] or high
compute requirements [5]. In this work, we tackle these problems
by developing a generic model to assist NOCs and CSes.We leverage
supervised learning to assist in classifying different outages. For
classification, we use the Support-Vector Machine model (SVM) [6].
Our system is two-stage. In the first, it discriminates Layer1/Layer2
problems from Layer3 ones. Here, we identify a set of easily to
collect metrics that can help achieving this in an efficient manner.
In the second, it classifies Layer3 problems based on their root
causes.

The research in [7] claims that supervised learning for fault
classification is often suffering from low quality of training data,
but in our research we have access to precise outage data, including
root cause data.

Our system requires minimal changes to the network, and has a
minimal impact on networking equipment and computing power.
We also demonstrate that our proposed system is implementable
and can be used to assist an existing provider efficiently.

With the system developed here, the NOC will speed up trou-
bleshooting, quickly create trouble tickets with the providers, and
the CS will improve customer satisfaction by giving informed feed-
back to all customer support cases. Compared to similar systems
such as [5], investments in time and equipment are small, changes
to configuration is minimal, and causes are successfully predicted
with an f1-score of 0.99 for Layer2 cases and f1-score of 0.66 for
other cases (see Section 4.1). Without the tool, only 35% of the cases
received any outage report from CS.

2 RELATEDWORK
Various works have used machine learning and other statistical
methods for attributing faults for specific network protocols, how-
ever, there is still lack of work that leverages logs from different
layers, and predict causes across network layers.

Existing research such as [3] implements a complex system of
user defined scenarios, while they do not require detailed knowl-
edge of the underlying system, they cannot detect problems outside
manually defined failure scenarios. Our labeled data and two-stage
approach makes classification of known faults across all layers
possible and efficient, and the feedback loop handles new fault
classes. Moreover, several projects [4, 8–12] examine how very
detailed measurements of optical signal strength can be used to
gain knowledge about the underlying Layer1 links. However, these

methods require measurement of q-factor [13] telemetry [14] which
is unavailable to higher layers providers.

The research in [15] also uses customer tickets for anomaly
detection, but focuses only on Layer1 and last mile. The authors
in [16] analyse Layers 2-7, while we analyse backbone Layers 1-3,
and a common “No issue” class for any problems in other layers
or outside the backbone network. Unlike [17], our system does
not need any knowledge about the underlying network, only the
manual feedback needs this.

Some commercial service providers have implemented systems
for anomaly detection in system logs, for instance [18]. These sys-
tems have the advantage that they analyse the existing logs, and
therefore are easy to start using, however, there is a high risk of
exposing confidential information to a third party. In our system,
only the feedback loop will have any confidentiality risk.

Finally, the authors in [5] analyse traffic by using a distributed
Apache Storm [19] system in combination with data obtained from
the Netflow [20] protocol. This puts extra stress on the network-
ing equipment [21] and demands much more storage and CPU
power, making it undesirable unless Netflow is already used for
other purposes. BFD, on the other hand, is usually implemented in
hardware.

The objective in this paper is to fill the gap and use simple data
logs from various layers together with customer support data to
classify outages in a fast and easily-implementable low-impact
solution.

3 METHODOLOGY
3.1 Description of system
Our system consists of a data collection unit, a classification model
(See Section 3.4), and alert and feedback units as shown in Figure 1.

Figure 1: Our proposed outage classification system.

We collected the measurements from a global network cover-
ing 12 cities around the world, which we depict in Figure 2. The
network uses three different Layer2 service providers to intercon-
nect its points of presence (PoPs). The first is Telia VPLS, which
is full-mesh Layer2 switched network based on VPLS/ELAN [22]
over their global backbone network. The VPLS service supports
Q-in-Q switching [23], so individual point-to-point VLANs [24]
are configured, with each VLAN having member ports from only
two cities. The second is Cogent L2C, which is a point-to-point
MPLS [25] based service where multiple point-to-point Layer2 links
are provided over the same physical interface. The third is Equinix
Cloud Exchange Fabric (ECXF), which is a service of multiple point-
to-point Layer2 links over the same physical interface.

Crosslayer Network Outage Classification Using Machine Learning ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA

The network is set up with IS-IS + BFD [26, 27] as Interior Gate-
way Protocol (IGP). The IGP makes sure that in case of issues on
one link or device, customer traffic is automatically re-routed to an
alternative path.

Figure 2: Network design.

3.2 Data description
In this work, we collected data from the monitored ISP over two
years (2019-08-08 to 2021-10-01). Below, we list these measurements
alongside their description.
Optical signal strength measurements. Every 30 minutes, op-
tical received signal strength for the local link to the provider was
read via SNMP [27]. There were 12 total outages on 5 interfaces, 88
drops in optical strength of more than 3dB on 14 interfaces and 53
increases of more than 3dB on 10 interfaces.
Interface error counters. Every 10minutes, interface error coun-
ters for all devices were logged by SNMP polling. No interface errors
were recorded for Layer2 switch ports, because any such errors
would have been revealed and corrected during pre-production
testing.
Buffer overflows/Tail-drops. Every 10 minutes, the buffer over-
flow/tail-drop counters were logged by SNMP polling. Only two
interfaces showed tail drops, altogether 40 incidents. The NOC had
especially amended this risk by over-provisioned the network to
handle network traffic peaks without packet loss.
Layer2 packet loss data. In each of the 11 cities shown in Fig-
ure 2, 2 probe Virtual Machines (VMs) were set up. Our probe
software is based on OpenNetNorad [28], which we rewrote in C to
improve performance and reduce CPU consumption. This “pinger”
transmits 100 UDP 64 byte packets every 0.5 seconds and waits
for responses, and the “ponger” immediately returns any received
packets to the sending IP address. The number of lost packets is
then recorded. Packets are transmitted from 100 different UDP ports
to detect any issues related to link aggregation or Equal Cost Multi-
path (ECMP) within the provider network. In addition to the probes
measuring point-to-point (P2P) loss over the Layer2 links, a full
mesh of probes (FM) were set up to measure the Layer3 service.
One or more lost UDP packets in a 0.5𝑠𝑒𝑐 interval generates one
loss report. There were 196 million loss reports for 36 different pairs
of probe VMs. These were pre-processed to 717352 unique events
(see Section 3.3).
BFD traps. For each point-to-point link or VLAN, BFD (Bidirec-
tional Forwarding Detection) [29] is configured to send one packet

every 100𝑚𝑠 . If 3 packets in a row are lost, the link is declared down
and an SNMP trap message is sent to a collector. SNMP trap data is
passively collected and stored in a database for later processing. The
IS-IS protocol also receives BFD events and takes care of re-routing
traffic.
Software crash logs. There were 62 instances of software crash/
core-dumps incidents on the routers and switches. Most of these did
not cause any interruption to network traffic since the Forwarding
Engines were still operational.
Configuration change logs. Configuration change logs indicate
which piece of equipment was configured and when. Also a textual
description of the work was performed.
Customer complaints data. The customers’ systems have strict
network requirements for latency, packet loss and jitter. Customer
cases were raised upon any violation of these requirements. The
data was anonymized and made available for this work. During the
period, there were 19399 customer cases, of which 8120 were related
to the network. The complaints were reduced to 2855 unique cases
on 21 different paths.
Customer service response data. For each customer case, CS
analysed logs and provided a Reason For Outage (RFO) if possible.
Out of 2855 cases, 1014 (35%) received RFO from CS, 109 of these
were “no issue found”.
Manual analysis of customer reports. We looked at all avail-
able data for each customer reported case and determined the reason
for the incident. In most cases the cause was in a Layer2 provider’s
network. For other cases the cause could be determined more pre-
cisely from CS responses. The results are presented in Table 1.
In some cases, there were losses in multiple providers at the same
time, which may be caused by either an (undetected) failure in
the monitored network, a larger failure that impacted multiple
providers, short traffic peaks that caused packet loss and therefore
triggered a re-routing to another provider and subsequent loss
there, or could be just a coincidence.
Multiple customer complaints received within a 5-minute interval
were counted as one case. Still, a single root cause could cause
multiple cases over a longer time. Some incidents were caused by
planned or unplanned maintenance. These were recorded as cases,
if they caused customer complaints even when the customer had
been informed ahead of time.
The 713857 events that did not correspond to customer cases were
not manually analysed.

3.3 Data preprocessing
The data used for the Machine Learning algorithm was BFD SNMP
events (BFD), point-to-point UDP pings (P2P) and full-mesh UDP
pings (FM). The other data was used only in the manual classifica-
tion process of all the cases. The result of the manual classification
was used to train the supervised machine learning system.

Due to small delays in detection and collection of test data, the
resolution of the timestamps had to be reduced tomatch events from
different sources. Each measuring point was added as a separate
feature, with an aggregation of the number of such events per
minute. One minute aggregation was chosen as a trade-off between
fast detection and data size. For the BFD and P2P data, themeasuring
points were each link, for the FM data, the measuring points were

ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA Evang et al.

the unique pairs of PoPs. This resulted in a dataset of 717352 unique
events and 2855 unique cases. The features were 47 BFD, 32 P2P
and 125 FM. The classes with < 4 cases were omitted.

3.4 Model description
We tested both Multilayer Perception neural networks (MLP) and
SVM. SVM had both shortest processing time and highest clas-
sification accuracy, and is used in this paper. The data was split
75:25 into a training dataset and a testing dataset, and we tuned
the hyperparameters using grid search. The optimal kernel was the
Radial Basis Function (RBF) kernel with𝐶 = 150 and 𝛾 = 7.5× 10−5.
SVM is in general resistant to overfitting and we verified this by
ShuffleSplit [30] and saw that the f1-score remained the same.

The first stage classification used only BFD data for classify-
ing the largest and most precisely defined classes, i.e. the Layer2
provider cases. The output was five classes. One per each Layer2
provider, A fourth class that involve cases where more than one
Layer2 provider, and one “Layer3” class for cases which were not
caused by Layer2 events. A large number of events were processed
in the first stage, but since fewer features were used, processing
requirements were greatly reduced. The second stage classifica-
tion used BFD, P2P and FM data for the Layer3 class to give an
indication of the root cause. Since a much smaller subset of events
was processed in this stage, the addition of more features did not
lead to a large increase in processing power requirement. See also
Section 4.4.

The feedback loop is used by NOC/CS when a prediction has
failed, to manually correct the case label in the data and re-train
the model.

After training the two machine learning models on the case
data, the trained models were applied to all events, to see what
knowledge could be gained.

4 PERFORMANCE EVALUATION
4.1 Evaluation metrics
We used the precision, recall and f1-score to assess our classifier.

For each class, the precision is the number of correctly predicted
cases divided by the total predictions in that class. Recall is the
number of correctly predicted cases divided by the number of true
cases in that class. F1-score is the harmonic mean of precision and
recall [31].

To visually evaluate the output of the classification process, we
plot the Confusion Matrices. These show how well the model was
able to assign a correct “predicted label” to each class of “true labels”.
The diagonals of the matrices show the correct predictions.

4.2 Accuracy and Feature importance
We performed the first classification stage initially by including all
features, which resulted in a precision of 0.89, a recall of 0.89 and
an f1-score of 0.92 (see the confusion matrix is in Figure 3a).

Using only BFD features showed much better scores for Layer2
cases, but did (as expected) not distinguish between Layer3 and
Customer issues as seen in the confusion matrix in Figure 3b and
scores in Table 2. Total f1-score was now 0.99 with a combined
Customer+Layer3 class . Further, repeating the first stage while

Table 2: First stage evaluation, based on BFD.

class precision recall f1-score

CogentLoss 1.00 0.99 0.99
TeliaLoss 1.00 1.00 1.00
MultiLoss 0.99 0.99 0.99
EquinixLoss 0.88 1.00 0.94
Customer 0.65 1.00 0.79
Layer3 0.00 0.00 0.00

Table 3: Second stage prediction scores (Based on
BFD+P2P+FM)

class precision recall f1-score

InternMaint 0.65 0.72 0.68
Optic 0.75 0.43 0.55
ProvMaint 0.33 0.55 0.41
SubseaCable 0.92 0.92 0.92
EquipFail 0.40 0.40 0.40
FiberCut 0.75 0.64 0.69
Layer1 0.83 1.00 0.91
Metro 1.00 0.43 0.60
DoS 1.00 1.00 1.00

including only FM and only P2P gave poor results with f1-score
0.35 for FM and and f1-score of 0.26 for P2P (see Figures 3c and 3d).

The BFD analysis contained only 4 misclassifications: 2 Multi-
Loss events classified as EquinixLoss were caused by two unrelated
coinciding loss events where the EquinixLoss event affected multi-
ple Equinix links, and 2 CogentLoss events classified as MultiLoss
were multiple coinciding Cogent events. The analysis including all
features added the capability of distinguishing between Layer3 loss
and Customer loss, at the expense of requiring more computing
time and adding more “noise” to the various Layer2-classifications.
Still, we see a relatively small number of misclassifications (14
misclassified and 429 correctly classified Layer2 events).

For the second stage, the events that were identified by the first
stage classification were removed, and a new supervised classifica-
tion was attempted for the remaining events. After hyperparameter
tuning, this classification showed an f1-score of 0.66. The size of
the dataset in this analysis is only 437 cases with 204 features, and
the results were not as good as for the first stage, but a reason-
able suggestion for a root cause might still provide valuable input
to the NOC’s troubleshooting process. Figure 4 and Table 3 show
the confusion matrix and classification score for stage 2, respec-
tively. We can clearly see that determining the exact root cause can
be hard for a few types of failures. For instance, ProvMaint and
InternalMaint events may cause a wide variety of different error
symptoms, that may be indistinguishable from the other classes. In-
terestingly, subsea cable cuts (f1-score 0.92) and fiber cuts (f1-score
0.69) had relatively good classification scores, even though these
were thought to be difficult to distinguish. A point for future study
might be to understand why.

Crosslayer Network Outage Classification Using Machine Learning ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA

(a) All features (b) BFD features only (c) FM features only (d) P2P features only

Figure 3: First stage classifications

Figure 4: Confusion matrix for second stage classification

Table 4: First stage data of the Layer2 cases and predictions

class support cases extrapolated cases

CogentLoss 556 (19.4%) 49997 (7.0%)
TeliaLoss 316 (11.1%) 64859 (9.1%)
MultiLoss 870 (30.5%) 47227 (6.6%)
EquinixLoss 58 (2.0%) 15346 (2.1%)
Customer+Layer3 633 (22.2%) 536428 (75.1%)
Other 14.8%

4.3 Extrapolation
Using the first stage model, BFD-trained on the cases with well
known cause and symptoms, we ran a prediction on all the events
where we did not get any customer complaints, to get an idea of how
common the various types of problems are in these events. The very
high f1-score of the model fitted on the complaint-data means that
the predictions on the non-complaint-data will be highly relevant
for our research. However, selection bias in that some hidden class
of outages never leads to complaints might reduce the accuracy of
the extrapolation.

For the first stage model, the results can be seen in Table 4.
The most interesting observation is that the “Customer+Layer3”
classification is much more common than in the cases where the

Table 5: Second stage data for the Layer3 cases and predictions

class cases predictions

InternMaint 114 (27.1%) 185169 (34.5%)
Optic 74 (17.6%) 216591 (40.4%)
ProvMaint 70 (16.7%) 26883 (5.0%)
SubseaCable 42 (10.0%) 19522 (3.6%)
EquipFail 40 (9.5%) 18308 (3.4%)
FiberCut 39 (9.3%) 58099 (10.8%)
Layer1 18 (4.3%) 10450 (1.9%)
Metro 19 (4.5%) 1329 (0.2%)
DoS 4 (1.0%) 77(0.01%)

customers filed complaints. (75.1% of the events, versus 22.2% of the
cases). This means that the test network does a good job of hiding
Layer3 problems from customers, and Layer2 problems are more
likely to cause customer complaints, but still only 0.4% of all events
caused customer cases.

The “MultiLoss” class is only 6.6% of the events in the non-
complaint dataset, vs 30.5% of the complaint-cases. This indicates
that the network is better at hiding Layer2 problems in a single
provider, and problems affecting multiple providers are more likely
to generate customer complaints.

Further, we used the model fitted on the Second stage data from
the cases, and made a prediction using only the “Customer+Layer3”
class from the first stage non-complaint events. Applying the sec-
ond stage model to the non-complaint data gives an indication that
Internal maintenance and Optic events are less likely to cause cus-
tomer complaints than the other classes, but the size of the dataset
and the lower accuracy of the model makes these results much less
certain. See Table 5.

4.4 Processing performance
BFD is implemented in hardware on our routers and do not put
any load on the routers’ CPU. To compare, Netflow would cause
15%-20% CPU impact according to [5], which matches our own
experience. SNMP traps produced by the routers using the lowest
priority processes, and all data is transmitted blindly using UDP,
also reducing processing. Our ML processing on an M1 Pro 10 core

ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA Evang et al.

CPU took <1sec. The amount of stored data for the ML system is
low. For each BFD trap we store timestamp+link-id and for each
UDP measurement we store timestamp, source/destination address
and loss percentage.

5 DISCUSSION
Our analysis of two years of outage data shows that a two-stage
classification system is well suited to classify network outages,
providing the NOC with useful predictions on where to start trou-
bleshooting, and providing CS with RFO for all cases with a much
better success rate than the observed 35% of CS responses during
the period of the study. BFD data exhibits their high importance
in the classification. In contrast, although the active P2P and FM
raw data provides very precise measurements, they are not highly
contributing to discriminating features in the classification model.

One important shortcoming is that we do not have latency mea-
surements. But as our analysis reveals, BFD SNMP traps are very
good indicator of problem types and location, so latency changes
would probably not have a great impact on this result. Moreover, in
this work, customer complaints are the only source for determining
whether a packet loss event is regarded as an outage. Only the cases
that are received as customer complaints are analysed in detail. This
means that some outages may be overlooked if the customer did
not complain, and some complaints may be groundless (i.e caused
by other factors than the test network). A customer complaint is
only counted as a network outage if the timestamp is reported as
within 60 seconds of an internal packet loss or BFD trap event.

There are many features that show some correlation, which
might disturb the machine learning classification model since one
event is likely to affect multiple features. But since the features
have a large geographic spread, and since there are many features,
a certain degree of correlation should not cause problems for our
analysis.

Model Drift (MD) is another consideration. During the 2 years of
data collection, there were continuous changes to both the network
topology, the routing protocols and the customer’s monitoring
system. MD may have degraded our analysis, in that patterns for
the various classes of events change over time. However, this will
also reflect more accurately a real-life situation. The results prove
that our first stage analysis was not significantly affected by MD. In
the future, we plan to gain insight into how our model may degrade,
for instance by temporal cross validation, and how to rectify it
through a system for retraining while running in the production. A
future improvement, especially for the second stage, would be to
also report the second ranked classification for an outage.

Another very important practical consideration is the difference
in complexity of gathering the data for the first stage and the second
stage. The passive BFD data used for the first stage is very easy
to collect. Most networks already use the BFD protocol as a part
of the IGP protocol, but very few actually gather the SNMP trap
data from BFD. The changes and risk to the network will be small,
the BFD events are already being detected, so the only change is to
generate SNMP trap messages and set up one central location to
store these (optionally a second location for redundancy.)

The active P2P and FM raw data are very accurate and provides
very precise measurements, but showed less precision in case clas-
sification, and the system used to gather this data is much more
expensive in management and computing power.

6 CONCLUSION
We have developed a system that Network Operations Centres and
Support Centres for smaller operators can use in a failure situation.
Using minimal resources, we passively collect BFD data and classify
the Layer2 events to an f1-score of 0.99. By adding a second stage
with active monitoring to collect UDP ping data we predict other
types of root cases with a 0.66 f1-score. Our analysis interestingly
shows that BFD features, which are the easiest to collect, give the
best results for outage classification.

REFERENCES
[1] J. Day and H. Zimmermann, “The osi reference model,” Proceedings of the IEEE,

vol. 71, no. 12, pp. 1334–1340, 1983.
[2] B. AlAhmadi, L. Axon, and I. Martinovic, “99% false positives: A qualitative

study of soc analysts’ perspectives on security alarms,” USENIX Association, 2021.
[Online]. Available: https://ora.ox.ac.uk/objects/uuid:0be05f6b-7470-4210-acb6-
2018d5dc6ca0

[3] K. Appleby, G. S. Goldszmidt, and M. Steinder, “Yemanja—a layered fault local-
ization system for multi-domain computing utilities,” Journal of Network and
Systems Management, vol. 10, pp. 171–194, 2004.

[4] T. Christopoulos, O. Tsilipakos, G. Sinatkas, and E. E. Kriezis, “On the calculation
of the quality factor in contemporary photonic resonant structures,” Opt.
Express, vol. 27, no. 10, pp. 14 505–14 522, May 2019. [Online]. Available:
http://opg.optica.org/oe/abstract.cfm?URI=oe-27-10-14505

[5] Y. Du, J. Liu, F. Liu, and L. Chen, “A real-time anomalies detection system based
on streaming technology,” in 2014 Sixth International Conference on Intelligent
Human-Machine Systems and Cybernetics, vol. 2, 2014, pp. 275–279.

[6] R. Soentpiet et al., Advances in kernel methods: support vector learning. MIT
press, 1999.

[7] S. Ayoubi, N. Limam, M. A. Salahuddin, N. Shahriar, R. Boutaba, F. Estrada-Solano,
and O. M. Caicedo, “Machine learning for cognitive network management,” IEEE
Communications Magazine, vol. 56, no. 1, pp. 158–165, 2018.

[8] C. Natalino, A. di Giglio, M. Schiano, and M. Furdek, “Root cause analysis for au-
tonomous optical networks: A physical layer security use case,” in 2020 European
Conference on Optical Communications (ECOC), 2020, pp. 1–4.

[9] L. Shu, Z. Yu, Z. Wan, J. Zhang, S. Hu, and K. Xu, “Low-complexity dual-stage soft
failure detection by exploiting digital spectrum information,” in 45th European
Conference on Optical Communication (ECOC 2019), 2019, pp. 1–4.

[10] C. Delezoide, P. Ramantanis, L. Gifre, F. Boitier, and P. Layec, “Field trial of
failure localization in a backbone optical network,” in 2021 European Conference
on Optical Communication (ECOC), 2021, pp. 1–4.

[11] Ujjwal, J. Thangaraj, and A. A. Dias Barreto, “Accurate qot estimation for the
optimized design of optical transport network based on advanced deep learning
model,” Optical Fiber Technology, vol. 70, p. 102895, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1068520022000785

[12] C. Miao, M. Chen, A. Gupta, Z. Meng, L. Ye, J. Xiao, J. Chen, Z. He, X. Luo,
J. Wang, and H. Yu, “Detecting ephemeral optical events with OpTel,” in 19th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 22).
Renton, WA: USENIX Association, Apr. 2022, pp. 339–353. [Online]. Available:
https://www.usenix.org/conference/nsdi22/presentation/miao

[13] “Recommendation O.201: Q-factor test equipment to estimate the transmission
performance of optical channels,” International Organization for Standardization,
Geneva, CH, Standard, 2003.

[14] [Online]. Available: https://www.juniper.net/documentation/us/en/software/
junos/interfaces-telemetry/index.html

[15] J. Hu, Z. Zhou, and X. Yang, “Characterizing Physical-Layer transmission
errors in cable broadband networks,” in 19th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 22). Renton, WA:
USENIX Association, Apr. 2022, pp. 845–859. [Online]. Available: https:
//www.usenix.org/conference/nsdi22/presentation/hu

[16] J. Iurman, F. Brockners, and B. Donnet, “Towards cross-layer telemetry,” in
Proceedings of the Applied Networking Research Workshop, ser. ANRW ’21. New
York, NY, USA: Association for Computing Machinery, 2021, p. 15–21. [Online].
Available: https://doi.org/10.1145/3472305.3472313

[17] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren, “IP fault
localization via risk modeling,” in 2nd Symposium on Networked Systems

https://ora.ox.ac.uk/objects/uuid:0be05f6b-7470-4210-acb6-2018d5dc6ca0
https://ora.ox.ac.uk/objects/uuid:0be05f6b-7470-4210-acb6-2018d5dc6ca0
http://opg.optica.org/oe/abstract.cfm?URI=oe-27-10-14505
https://www.sciencedirect.com/science/article/pii/S1068520022000785
https://www.usenix.org/conference/nsdi22/presentation/miao
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/index.html
https://www.juniper.net/documentation/us/en/software/junos/interfaces-telemetry/index.html
https://www.usenix.org/conference/nsdi22/presentation/hu
https://www.usenix.org/conference/nsdi22/presentation/hu
https://doi.org/10.1145/3472305.3472313

Crosslayer Network Outage Classification Using Machine Learning ANRW ’22, July 25–29, 2022, PHILADELPHIA, PA, USA

Design & Implementation (NSDI 05). Boston, MA: USENIX Association, May
2005. [Online]. Available: https://www.usenix.org/conference/nsdi-05/ip-fault-
localization-risk-modeling

[18] [Online]. Available: zerbium.com
[19] The Apache Software Foundation, “Apache storm,” https://storm.apache.org/.
[20] E. B. Claise, “Cisco systems netflow services export version 9,” Internet Requests

for Comments, RFC Editor, RFC 3954, 8 2004, http://www.rfc-editor.org/rfc/
rfc3954.txt. [Online]. Available: http://www.rfc-editor.org/rfc/rfc3954.txt

[21] “Netflow services,” p. 74, 2003.
[22] Metro Ethernet Forum, “Ethernet services definitions - phase 2,” 4 2008.
[23] “Provider bridges, ieee std. 802.1ad,” 2005.
[24] “Bridges and bridged networks, ieee std. 802.1q-2018,” 2016.
[25] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching

architecture,” Internet Requests for Comments, RFC Editor, RFC 3031, 1 2001,
http://www.rfc-editor.org/rfc/rfc3031.txt. [Online]. Available: http://www.rfc-
editor.org/rfc/rfc3031.txt

[26] International Organization for Standardization, Information technology —
Telecommunications and information exchange between systems — Intermediate
System to Intermediate System intra-domain routeing information exchange

protocol for use in conjunction with the protocol for providing the connectionless-
mode network service, ISO/IEC10589:2002 ed. Vernier, Geneva, Switzerland:
International Organization for Standardization, 2015. [Online]. Available:
https://www.iso.org/standard/30932.html

[27] D. Katz and D. Ward, “Bidirectional forwarding detection (bfd) for ipv4 and ipv6
(single hop),” Internet Requests for Comments, RFC Editor, RFC 5881, 6 2010.

[28] Facebook Inc, “Opennetnorad,” https://github.com/fbsamples/OpenNetNorad,
2017.

[29] R. Presuhn, “Version 2 of the protocol operations for the simple network
management protocol (snmp),” Internet Requests for Comments, RFC Editor,
STD 62, 12 2002, http://www.rfc-editor.org/rfc/rfc3416.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3416.txt

[30] Q.-S. Xu and Y.-Z. Liang, “Monte carlo cross validation,” Chemometrics and
Intelligent Laboratory Systems, vol. 56, no. 1, pp. 1–11, 2001. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0169743900001222

[31] N. Chinchor, “MUC-4 Evaluation Metrics,” in Proceedings of the 4th Conference on
Message Understanding, ser. MUC4 ’92. USA: Association for Computational
Linguistics, 1992, p. 22–29. [Online]. Available: https://doi.org/10.3115/1072064.
1072067

https://www.usenix.org/conference/nsdi-05/ip-fault-localization-risk-modeling
https://www.usenix.org/conference/nsdi-05/ip-fault-localization-risk-modeling
zerbium.com
https://storm.apache.org/
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
https://www.iso.org/standard/30932.html
https://github.com/fbsamples/OpenNetNorad
http://www.rfc-editor.org/rfc/rfc3416.txt
http://www.rfc-editor.org/rfc/rfc3416.txt
https://www.sciencedirect.com/science/article/pii/S0169743900001222
https://doi.org/10.3115/1072064.1072067
https://doi.org/10.3115/1072064.1072067

Article V

Fida*, M., Ahmed*, A. H., Dreibholz, T., Ocampo, A. F., Michelinakis, F. I and
Elmokashfi, A. Bottleneck identification in cloudified mobile networks based on
distributed telemetry. Submitted to Conference on emerging Networking EXperiments
and Technologies (CoNEXT 2022).
URL: https://www.techrxiv.org/articles/preprint/
Bottleneck_Identification_in_Cloudified_Mobile_Networks_based_on_Distribute
d_Telemetry/22100546

https://www.techrxiv.org/articles/preprint/Bottleneck_Identification_in_Cloudified_Mobile_Networks_based_on_Distributed_Telemetry/22100546

Bottleneck identification in cloudified mobile
networks based on distributed telemetry

MahRukh Fida*
mrukh@glos.ac.uk

University of Gloucestershire
Cheltenham, UK

Azza H. Ahmed*
azza@simula.no

Simula Metropolitan Center for
Digital Engineering

Oslo, Norway

Thomas Dreibholz
dreibh@simula.no

Simula Metropolitan Center for
Digital Engineering

Oslo, Norway

Andrés F. Ocampo
andres@simula.no

Simula Metropolitan Center for
Digital Engineering

Oslo, Norway

Foivos I. Michelinakis
foivos@simula.no

Simula Metropolitan Center for
Digital Engineering

Oslo, Norway

Ahmed Elmokashfi
ahmed@simula.no

Simula Metropolitan Center for
Digital Engineering

Oslo, Norway

ABSTRACT
Cloudified mobile networks, such as 5G, are expected to
deliver a multitude of services to several slices in parallel,
while having reduced capital and operating expenses. There-
fore, 5G mobile systems, need to ensure that the Service
Level Agreements (SLA) of customized end-to-end sliced ser-
vices are met. This requires monitoring the resource usage
and characteristics of data flows at the virtualized network
components and interfaces of its cloud mobile network, as
well as tracking the performance of its radio interfaces and
user equipments (UEs). A central monitoring architecture
is impossible to support millions of UEs though. This paper,
proposes a distributed telemetry framework in which UEs
act as early warning sensors. Upon flagging an anomaly, the
cloudified mobile network activates its machine learning
model to attribute the cause of the anomaly. For root cause
analysis we employ active, passive and in-band telemetry
in our network. Our framework achieves an impressive per-
formance of 85% F1 score in detecting anomalies caused by
different bottlenecks, and an overall 89% F1 score in attribut-
ing these bottlenecks.

1 INTRODUCTION
As mobile networks are transforming into multi-service in-
frastructures, quality assurance is increasingly both central
and important. In the near future, these networks are ex-
pected to carry, beside today’s best effort traffic, a multitude
of use cases with stringent requirements e.g. IoT, industrial
automation and highly interactive multiverse traffic [10].
Ensuring that the different tenants are accommodated goes
beyond over-provisioning base stations and fibre links to
quickly detecting and remediating performance degrada-
tions. Note that all these steps need to apply to both, a very

* These authors contributed equally to this work.

granular scope (i.e. a few users covered by a single base sta-
tion) as well as geographical scopes in an increasing coarse-
ness. Detecting performance degradation necessitates the
timely collection of representative telemetry, the automation
of flagging any performance degradation and root cause attri-
bution, and finally the design of an effective control system
that reconfigures the affected network elements.
This paper proposes an approach for timely collecting

telemetry, detecting and attributing issues in mobile net-
works. Unlike data centre networks, architectures for col-
lecting telemetry in mobile networks have received little
attention. Differences between the two types of networks,
especially the challenging radio interface, make adopting
data centre approaches a long shot at best. We tackle this by
leveraging user equipment (UEs) as early warning sensors.
A UE performs a simple anomaly detection and informs the
network in case an anomaly is detected. On the network
side, we experiment with a diverse set of metrics that in-
cludes active, passive and in-band telemetry. Once a problem
is flagged by a set of UEs, a network controller will use a
supervised machine learning algorithm to identify the root
cause of the anomaly. However, a classical shortcoming of
such approaches is the fact that training may not be compre-
hensive enough to include all types of anomalies. To address
this, we devise a novel method to single out new types of
anomalies and use them to further improve the system.
We have built a software defined virtualised testbed that

resembles a cloudified mobile network and used it to assess
our telemetry architecture. To this end, we have introduced
a set of performance bottlenecks both in the radio access
network (RAN) and the core. Our system achieved an impres-
sive performance of 85% F1 score in detecting bottlenecks
by the end-user and overall 89% F1 score in attributing the
bottlenecks based on network measurement.

MahRukh Fida*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

This paper makes three key contributions:

(1) First, it proposes a new approach for anomaly detec-
tion in mobile network that can leverage millions of
end devices attached to its edge i.e. UEs, along with
a complete architecture.

(2) Second, it proposes a viable solution to the problem
of using supervised ML for classifying problems with
potentially yet unlearned classes in the context of
mobile networks.

(3) Finally, we have empirically evaluated our approach
in the lab.

2 BACKGROUND AND MOTIVATION
5G network is expected to be flexible and programmable,
with the ability to support instantiation of services across
heterogeneous network components and virtualised infras-
tructures. It allows service providers to deploy and operate
different services as separate network slices in parallel, with
the guarantee of slice isolation and predefined quality level,
namely a service level agreement (SLA).
To meet SLAs, it is critical for the service providers and

network operators to constantly monitor various compo-
nents of the network. It is required to identify faults in the
network and resolve the issues in a timely manner, so as
to minimize service downtime. In addition to infrastructure
performance, it is essential to monitor applications from an
end-user’s perspective. Monitoring of end-user application
performance informs if customer expectations are met as
well as to single out any radio issue, that may go undetected
by monitoring at rest of the mobile network.
Our goal in the study is to design a framework that can

both flag events causing performance degradation to an end
service, and to attribute and localize it with minimal system
overhead. We term the events causing end-to-end perfor-
mance degradation as bottlenecks.
Literature study shows that machine learning (ML) can

be leveraged to automate detection of the bottlenecks at run
time [31]. For both the detection and attribution of the bot-
tlenecks, a supervised learning method is employed as in [9],
so to arrive at the root cause of performance degradation
in a mobile network. These methods are dependent upon
labeled training samples, and fail when an unlearned issue
arises.

Secondly, the accuracy of a supervised ML model depends
on the availability of data. To trigger and attribute issues
that deteriorate performance quality of an end service, it is
essential to provide a holistic view of the network system to
the ML model. It includes monitoring of both the network
infrastructure and the applications from an end-user’s per-
spective. Monitoring performance of end services, can be
done with crowdsourcing [14]. It includes passive as well

as active monitoring of the quality of service (QoS) features
e.g. network coverage and quality of experience (QoE) fea-
tures such as page load time in web-browsing applications.
Crowdsourcing is expensive in terms of data caps, especially
when a crowdsourced end-user has to periodically report the
monitored features, to a central monitoring system.

As far as the network infrastructure is concerned, passive
measurement strategy best suits it when its components are
operated/controlled by a single entity. It involves recording
and analyzing the actual user traffic to understand network
usage trends. In situations where it is not possible to select
capture points freely, or some links or connecting devices
cannot be monitored passively, active probing is used. This
method injects test traffic into the network to find faults or
issues within the network. Active probes are controllable
in terms of when and what network features to measure. It,
however, burdens the probed devices and links with addi-
tional data. Passive measurements do not inject additional
data, but monitoring all the traffic flows can be expensive in
terms of memory and processing resources of the monitoring
devices. Secondly network administrators and operators typ-
ically utilise a client–server monitoring framework, in which
case even the passive measurements incur communication
overhead other than management and privacy issues. It is
usually impractical for all the training data to be uploaded
to the central controller with an increasing network conges-
tion. As an alternate to the traditional passive monitoring
strategies, one can apply the In-band Network Telemetry
(INT) [19] method that is used in datacenters. INT is pas-
sive monitoring system implemented with Programming
Protocol-independent Packet Processors (P4) [3]. Being pro-
grammable, it allows a centralised network controller not
only to configure the measurement frequency and to change
the monitored features on the fly, but also to adjust the mon-
itoring granularity to per user-end, per-link, per-flow down
to a packet-level.
In the light of the above discussed potentials and chal-

lenges, we aim for a distributed monitoring architecture that
may leverage local (or semi-local) learning with minimal
monitoring overhead.

3 SYSTEM INFRASTRUCTURE
The hardware and software infrastructure of our mobile
network testbed is illustrated in Figure 1.

3.1 Mobile Network
Main part of the network is an Enhanced Packet Core (EPC),
containing the four basic components [7]:

(1) Home Subscriber Server (HSS), for managing the net-
work subscriber accounts;

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Figure 1: The Infrastructure of the Network System.

(2) Mobility Management Entity (MME) for managing
the attachment of Evolved Node Bs (eNodeB, i.e. base
station) and User Equipments (UE, e.g. smartphones
or modems);

(3) Control Plane of the Packet Data Network Gateway
(SPGW-C), for managing access to a Public Data Net-
work (PDN, i.e. the Internet);

(4) User Plane of the Packet Data Network Gateway (SP-
GW-U), for forwarding user traffic between UEs and
the PDN.

HSS, MME, SPGW-C and SPGW-U are using the open source
implementation from OpenAirInterface∗ (OAI) [6, 7]. In
addition to four EPC components, we also deploy FlexRAN†,
particularly a FlexRAN Controller to manage the eNodeB
parameters and provide fine-granular metrics from the eN-
odeBs.
The eNodeB is deployed using the open source imple-

mentation from OpenAirInterface [24]. In addition, the
software defined radio (SDR) Ettus USRP B210 provides
both the antennas and the Radio Unit (RU), which converts
radio waves into digital waveforms.
Clearly, managing the components of a complex setup

manually is not straightforward. Therefore, we deploy Open
Source MANO‡ (OSM) as orchestration platform for Net-
work Function Virtualisation (NFV). Basically, OSM per-
forms [29, Chapter 1]:

∗OpenAirInterface: https://www.openairinterface.org.
†FlexRAN: https://mosaic5g.io/flexran.
‡Open Source MANO: https://osm.etsi.org.

• Composition of VNFs into Network Services (NS);
• Instatiation of NSs and their VNFs in an underlying

Network Function Virtualisation Infrastructure (NFVI)
as so-called Virtual Deployment Units (VDU), which
are virtual machines and/or containers;

• Run-time configuration (e.g. initial installation, run-
time change of parameters, reconfiguration) of the
VDUs;

• Monitoring of the VDUs (details in Subsection 3.2);
• Scaling (i.e. increasing/decreasing the number of in-
stances) and removal of VDUs.

Currently, our setup is running OSM “Release EIGHT” on
Ubuntu 18.04 “Bionic Beaver”. OSM uses Juju§ for managing
the VDUs. That is, for each VDU, Juju maintains a separate
container that controls the VDU. Each container runs the
Juju Charm of the corresponding component, which is a cus-
tom Python program to implement the component-specific
control functionalities. In our setup, we use OpenStack [25]
“Stein” on Ubuntu 19.04 “Disco Dingo” as NFVI to host the
VDUs, which are instantiated as virtual machines in two
OpenStack compute nodes. The VDUs run Ubuntu 18.04
“Bionic Beaver”, while all other VDUs run Ubuntu 20.04
“Focal Fossa”.

3.2 Telemetry Components
Clearly, as part of the components orchestration, OSM al-
ready provides two ways of monitoring the deployed NSs:

§Juju: https://jaas.ai.

MahRukh Fida††*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

(1) By using features of the NFVI (i.e. by Ceilometer
and Gnocchi in OpenStack [25]);

(2) By Juju Charms, that run customised monitoring
code as part of the configuration service managing
the VDUs.

However, this monitoring only covers coarse metrics [36, 38]
– like CPU utilisation, per-interface packet and byte coun-
ters, etc. – and does not represent the quality of services
features of user data traffic. Particularly, there is no informa-
tion about user flows (e.g. TCP connections, etc.) of users.
Packet and byte counters only represent the aggregation of
all users and their flows. We aim at a vendor-independent,
“standardised” solution for passivemonitoring of the per-flow
user data traffic with P4¶ [5] based software switches. P4
provides a standardised language for programming packet
processors, i.e. switches, which can be compiled for different
target devices. Currently, we deploy P4 software switches,
using the Behavioral Model Version 2 (BMv2) Simple Switch
software implementation∥. However, once available, it would
be straightforward to just replace them by more powerful,
off-the-shelf P4 hardware switches. In our testbed, as shown
in Figure 1, we have P4 switches for the four important in-
terfaces (actually: internal networks):

(1) S1-C, between eNodeBs and MME (network control
traffic);

(2) S1-U, between eNodeBs and SPGW-U (encapsulated
user traffic);

(3) SGi, between SPGW-U and PDN (decapsulated user
traffic);

(4) FlexRAN, between eNodeBs and FlexRAN Controller
(only FlexRAN control traffic).

Particularly, the user traffic is handled on the S1-U interface,
where it is tunnelled via GPRS Tunnelling Protocol (GTP),
and on the SGi interface, where it is “normal” traffic without
encapsulation. It should also be noted that SGi traffic uses
the public IP address of the SPGW-U. The SPGW-U performs
Network/Port Address Translation (NAT/PAT) between in-
ternal addresses used by the UEs, and the public SPGW-U
address. Inside the tunnel, traffic therefore uses the internal
addresses of the UEs.
We programmed the P4 switches to attach, process and

remove custom telemetry data to/from packets running over
them. For example, the S1-U switch can attach information to
a user packet (in the GTP tunnel), and forward the modified
version of the packet to the Telemetry Collector server. Then,
the SGi switch can do the same, and remove the telemetry
information before forwarding the packet into the Internet.

¶P4: https://p4.org.
∥Behavioral Model Version 2 (BMv2) Simple Switch: https://github.com/

nsg-ethz/p4-learning/wiki/BMv2-Simple-Switch.

Figure 2: Proposed bottleneck identification system.

The Telemetry Collector can correlate the two packet snip-
pets (on the flow identifiers that come with the INT fields),
and generate performance metrics. Note that the actual out-
going packet into the Internet does not contain telemetry
data any more, i.e. the privacy of the user is not getting
compromised.
With the INT information of the packets, collected by

the P4 switches at S1-U and SGi, the Telemetry Collector
can track both the characteristics of user data traffic and
the status of the P4 switches such as congestion at a port.
Depending on the processing power on P4 switches and the
Telemetry Collector Server, the system may be configured
to only handle a subset of the packets or flows, for creating
samples (e.g. only every 𝑛-th packet or flow or only flows of
certain representative users, etc.).

4 BOTTLENECK IDENTIFICATION
ARCHITECTURE

Our goal is to use the monitoring at UE and telemetry com-
ponents described in Subsection 3.2 for bottleneck identifi-
cation. Figure 2 depicts the distributed architecture of our
proposed bottleneck identification and classification system.
It comprises of three stages:

(1) System monitoring
(2) Bottleneck detection
(3) Bottleneck classification

An elaboration of each stage is offered in the following.

4.1 System Monitoring
Based on the design considerations discussed above, we mon-
itor communication system both at a user side (i.e. at UE)
and at the rest of the mobile network.
Monitoring at UE records QoE-based features of the ap-

plications running on the end-device. Being dependent on
an application, this can be page load time and throughput

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Type Description Examples of features
Monitoring at UE

Active monitoring from UE Ping to Server Average RTT, Packet loss percentage
Passive monitoring of an applica-
tion service

Example: Downlink TCP iPerf to
Server

Transfer (MB), Bitrate (Mbps), Jitter(ms)

Passive monitoring of network cov-
erage

Example: NetMonitor App RSRP, RSRQ, RSSNR

Monitoring of network links
Active monitoring of S1-U and SGi
links

Ping from eNodeB to SPGW-U Average RTT, Packet loss percentage
Ping from SPGW-U to the test
server

Average RTT, Packet loss percentage

Passive monitoring by P4 switches
at S1-U and SGi

INT on user data traffic and status
of the switches

Packet count of a flow, 𝑝𝑎𝑐𝑘𝑒𝑡_𝑙𝑒𝑛𝑔𝑡ℎ,
𝑑𝑒𝑞_𝑞𝑑𝑒𝑝𝑡ℎ, 𝑑𝑒𝑞_𝑡𝑖𝑚𝑒𝑑𝑒𝑙𝑡𝑎, hitter

Monitoring of network resources
Passive monitoring resource usage
at SPGW-U and FlexRAN controller

Using 𝑠𝑎𝑟 utility of 𝑆𝑦𝑠𝑠𝑡𝑎𝑡 to col-
lect CPU and memory and disk in-
put output activit

CPU usage features (i.e. %user, %system,
%iowait, %steal, %idle), Memory usage fea-
tures (i.e. kbmemfree, kbavail, kbmemused,
permemused, kbbuffers, kbcached, kbcom-
mit, percommit, kbactive, kbinact, kbdirty)
and I/O features (such as tps, rtps, wtps,
dtps) [11]

Monitoring by FlexRAN controller
Control commands from north-
bound RESTful API of FlexRAN con-
troller

To obtains configurations and sta-
tistics of eNB(s) and their UE(s)

We record features specified by
flex_cell_config, flex_ue_config
and flex_ue_stats_report∗∗.

Table 1: Monitoring the mobile network.

for a web-browsing service, while for a streaming video it
can be delay, jitter and throughput. For our test scenario,
we take downlink TCP iPerf from the test server as a user
data session, the quality features of which, shown in Ta-
ble 1, are monitored passively. The downlink data transfer
is performed at the maximum bandwidth of the end-to-end
path. UE tracks RTT to the test server by sending UDP ping
messages, every second. This active measurement is done
to monitor delay in the mobile network. Lastly UE passively
monitors the radio coverage quality via NetMonitor††, ev-
ery second. NetMonitor collects Reference Signal Received
Power (RSRP), Reference Signal Received Quality (RSRQ)
and Received Signal to Noise Ratio (RSSNR).
To monitor system resources, performance, and use of

the network components such as SPGW-U and FlexRAN
controller we run Sysstat utility‡‡ [11] periodically, ev-
ery 5 seconds. The FlexRAN controller provides a north-
bound RESTful API for issuing control commands and for

††NetMonitor is an Android app from https://vavsoftware.ru.
‡‡Sysstat: https://bencane.com/2012/07/08/sar-sysstat-linux-

performance-statistics-with-ease.

obtaining statistics and reports for the connected base sta-
tions using simple HTTP requests§§. We run curl -X GET
http:// 127.0.0.1:9999/ stats/manager/all command, every 5 sec-
onds. This gets the RAN configuration and status for the cur-
rent TTI for all eNBs connected to this controller. It reports
on the configuration of eNB(s) and UE(s), and statistics about
Medium Access Control (MAC), Radio Link Control (RLC),
Packet Data Convergence Protocol (PDCP) layers.
To monitor user-data traffic, network links and status of

switching devices, we utilize the P4 switches of S1-U and
SGi interfaces (see also Figure 1). The switches create clones
of the passing by packets and adds an additional header
of “IP options” [28, Subsection 3.1] with telemetry fields
that may both comprise of status of the P4 switches such
as their buffer occupancy and flow/packet characteristics
such as arrival time of a packet. The metrics of INT can be
programmed depending upon the monitoring requirement.
These cloned (mirrored) packets are then sent to the Teleme-
try Collector (shown in Figure 1), for further analysis. For

§§FlexRANnorthboundAPI: https://mosaic5g.io/apidocs/flexran/#api-
Stats-GetStatsHumanReadable.

MahRukh Fida§§§*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

our test scenario we compute four parameters for INT on
each of the two switches. These are (1) packet count of a data
flow, (2) ℎ𝑖𝑡𝑡𝑒𝑟 which is a Boolean metric that assesses if
the packet is part of a bursty traffic. We have taken switch
queue size of 5000 or more bytes as an indicator of a bursty
traffic, (3) deq_timedelta that measures in microseconds the
amount of time a packet spends in P4 switch queue, and (4)
deq_qdepth which indicates the depth of the switch queue
when the packet was dequeued, in units of number of packets.
The last two parameters are derived from the struct stan-
dard_metadata of the 𝑃416 V1model architecture¶¶. Along
with these key parameters the mirrored packet carries the
flow identifier and the switch identifier to the Telemetry
collector. The telemetry collector then computes some ad-
ditional parameters from the INT data of the two switches
such as packet loss and 𝑗𝑖𝑡𝑡𝑒𝑟 .

As an alternate to passive INT monitoring, we also lever-
age active probes in the network system. We have two such
probes, one at the eNodeB and other at the SPGW-U. The first
one measures delay and packet loss on S1-U interface, and
the other one at the SGi interface by injecting Ping [8] mes-
sages from eNodeB and SPGW-U, destined to the SPGW-U
and the test server, respectively.
Lastly to track the resource utilization in the mobile net-

work, we monitor load on the CPU, memory and I/O disk op-
erations with Sysstat. In current architecture, we exploit Sys-
stat parameters collected at the SPGW-U and the FlexRAN
controller. These are the network components where we
introduce our test bottleneck scenarios.

4.2 Bottleneck Detection
We formulate the bottleneck detection stage as anomaly
detection problem for multivariate time series. We denote the
measurements used to identify bottlenecks as multivariate
time series 𝑇 = {𝑥1, .., 𝑥𝑇 }, 𝑥(𝑡) ∈ R𝑚 is an𝑚-dimensional
vector of samples for𝑚 variables at timestamp 𝑡 . The goal
of anomaly detection methods is to learn a model to label a
binary variable 𝑦𝑡 ∈ {0, 1} at time 𝑡 if anomaly is detected
when it experiences an unseen observation 𝑥 ′

𝑡 . As it is not
easy to collect training data for all types of bottlenecks, it
is therefore important to use an anomaly detection model
that can learn in an unsupervised fashion to flag any type
of bottlenecks as anomaly. Unsupervised anomaly detection
is assuming that 𝑇 contains only normal samples and the
model is trained to learn the distribution of normal data. An
anomalous point is one that differs significantly from𝑇 . The
difference between the sample 𝑥 ′

𝑡 and the normal data 𝑇 is
measured by an anomaly score, which is then compared to

¶¶Standard Metadata: ttps://github.com/p4lang/behavioral-
model/blob/main/docs/simple_switch.md

a threshold. If the score is above the threshold the point is
considered as an anomaly.

4.3 Bottleneck Classification
Once a bottleneck has been detected by the previous stage,
we need to specify the type and location of this bottleneck.
We take it as a classification problem and formulate it as a
supervised learning, where the model is trained with known
class labels. More specifically, we define 10 classes of single
bottlenecks (See Table 2). These are bottlenecks that have
a signal source of occurrence e.g. congestion at S1-U. Be-
sides the single bottlenecks, our classification model should
also be able to classify the composite bottlenecks, that has
more than sources e.g. data congestion at S1-U and stress on
network resources. Additionally, the model should identify
any bottleneck that is not experienced before as unidentified,
instead of misclassifying them. Those new bottlenecks are
registered in a log file along with their corresponding mea-
surements features. If their occurrence increases, they can
be labelled and used for retraining the classification model.
To this end, new type of bottleneck is introduced in the
bottleneck identification system.

5 SYSTEM IMPLEMENTATION
5.1 Types of Bottlenecks
To create bottlenecks at different parts of the network, we
generate

(1) congestion on network data paths,
(2) introduce packet loss in the network
(3) overload network resources, and
(4) create interference at the radio access link.
Table 2 provides the complete list of bottlenecks that we

test on our system architecture. To emulate congestion, we
introduce an additional TCP traffic flow in downlink direc-
tion at the maximum bandwidth of the network link(s), using
the iPerf∗∗∗ tool. Next, we induce packet loss through the
Linux traffic control feature NetEm †††. These experiments
consist of either a high loss percentage of around 5% or a low
loss percentage of 1%. This adversely effects the outgoing and
incoming data flow. Thirdly, to overload the network re-
sources, we stress out the CPU and memory resources with
increase in input/output disk operations with the stress-ng
tool [20]‡‡‡. Lastly, to create radio interference we deploy
a GNU Radio§§§ noise source on a separate system using a

∗∗∗iPerf: https://iperf.fr.
†††NetEm: https://wiki.linuxfoundation.org/networking/netem.
‡‡‡For high stress we use: stress-ng –cpu 4 -d 1 –hdd-bytes 1G -m

1 –vm-bytes 1G –iomix 1 –iomix-bytes 1G.
For low stress, we use: stress-ng –cpu 1 -d 1 –hdd-bytes 256M -m 1
–vm-bytes 256M –iomix 1 –iomix-bytes 256M.

§§§GNU Radio: https://www.gnuradio.org.

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Type Location Measurements Complexity
Congestion S1-U Downlink TCP iPerf at maximum available bandwidth

Single

Congestion SGi Downlink TCP iperf at maximum available bandwidth
Congestion S1-U and SGi Downlink TCP iperf at maximum available bandwidth
High stress on re-
sources

SPGW-U High CPU, Memory and Disk I/O stress

High Stress on Re-
sources

FlexRAN Controller High CPU, Memory and Disk I/O stress

Low packet loss SPGW-U 1% packet loss
High packet loss SPGW-U 5% packet loss
Radio interference Radio access link Radio frequency interference caused by a transmitter on

the same frequency at which the test UE received data
Low resource stress SPGW-U Low CPU, Memory and Disk I/O stress
Low resource stress FlexRAN Controller Low CPU, Memory and Disk I/O stress
High stress on re-
sources

SPGW-U and
FlexRAN Controller

High CPU, Memory and Disk I/O stress

Composite
Congestion, S1-U, Downlink TCP iPerf at maximum available bandwidth,
High resource stress FlexRAN Controller High CPU, Memory and Disk I/O stress
Congestion, S1-U, Downlink TCP iPerfat maximum available bandwidth,
High packet loss SPGW-U 5% packet loss
High packet loss, SPGW-U 5% packet loss,
High resource stress High CPU, Memory and Disk I/O stress

Table 2: Types of bottlenecks tested on the test bed.

dedicated SDR EttusUSRP B210. The noise source generates
an additive white Gaussian noise (AWGN) signal which has
central frequency similar to that of the eNB radio carrier.
As indicated by Table 2 the test bottlenecks can be cate-

gorised into single and composite groups depending upon
their complexity. Single bottleneck is caused by performance
degradation at a single source and is of a single type. Com-
posite, on the other hand is a result of either more than one
type of performance degradation or is sourced by more than
one locations, simultaneously.

5.2 Bottleneck Identification Framework
In our bottleneck detection unit, we use a variant of the
well known anomaly detection architecture “autoencoder”,
more specifically variational autoencoder (VAE). An autoen-
coder (AE) [32] is an unsupervised artificial neural network
composed of an encoder and a decoder. The encoder (in Equa-
tion 1) takes the input 𝑥 and maps it into a set of latent vari-
ables 𝑧, whereas the decoder maps the latent variables 𝑧 back
into the input space as a reconstruction 𝑥 ′ (Equation 2).𝑊
and 𝑏 are the weight and bias of the neural network and 𝜎 is
the nonlinear transformation function.

𝑧 = 𝜎(𝑊𝑥ℎ𝑥 + 𝑏𝑥ℎ) (1)

𝑥
′ = 𝜎(𝑊𝑥ℎ𝑧 + 𝑏𝑥ℎ) (2)

The difference between the original input vector𝑋 and the
reconstruction 𝑥 ′ is the reconstruction error as in Equation 3.
An autoencoder learns to minimize this reconstruction er-
ror (loss).

𝑙𝑜𝑠𝑠 = | |𝑥 − 𝑥 ′ | | (3)

To avoid the over-fitting that may result from decoding
the latent space 𝑧 without any reconstruction loss, we use
VAE. Instead of encoding an input as a single point, VAE
encode input as a distribution over 𝑧. A sample point from
this distribution is then decoded and the reconstruction er-
ror can be computed. Thus the encoders and decoders of
VAE are called as probabilistic encoders and decoders. Be-
sides the reconstruction error, the loss function of VAE has
to regularise the latent variable 𝑧 that can be done using
Kulback-Leibler divergence (KL). The loss function can be
expressed in Equation 4, where `, _ are the mean and covari-
ance of the distribution and 𝑁 is the Gaussian distribution.

𝑙𝑜𝑠𝑠 = | |𝑥 − 𝑥 ′ | |+𝐾𝐿[𝑁 (`𝑥 , _𝑥), 𝑁 (0, 1)] (4)

After training, VAE will reconstruct normal data very well,
while failing to do so with anomaly data which the VAE has

MahRukh Fida§§§*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

not encountered.VAE uses the reconstruction probability as
the anomaly score.

In our implementation, VAE encoder and decoder are both
a a two hidden layer with 28, 14 dimensions for the first and
second hidden layer, respectively. The latent variable is 7
dimensions. Parameters of VAE are estimated using cross-
validation.

For bottleneck classification stage, the model should solve
all the three types of classification problems:

(1) Multi-class, to predict one of the 10 single bottleneck
classes;

(2) Multi-label classification, for predicting composite
bottlenecks.

(3) unidentified classes; to predict new types of bottle-
necks that are not introduced in the training.

To accomplish this task, we use a Multi-Layer Percep-
tron (MLP), a neural network with fully connected neurons
among layers. MLP model has the capabilities to approxi-
mate, through supervised learning, the function that relates
the input with the output. Our MLP classifier has an input
layer that expects 48 inputs and three hidden layers with
64, 24, 16 neurons respectively (that is chosen with trial
and error method). We use the rectified linear unit (ReLU)
as an activation function in the hidden layers which con-
verges very quickly during the training. The output layer
matches the number of single bottleneck classes. Each node
in the output layer has a sigmoid activation, which predicts
a probability of class membership for the label, a value be-
tween 0 and 1. This means it will predict 10 probabilities for
each input sample. These can be converted to class labels by
rounding the values to either 0 or 1. The output probability
indicates the confidence of the classifier in its predictions.
Based on this we can identify all types of bottlenecks. For
instance, an input sample with the output [0.1, 0.98, 0.2, 0.4,
0.09, 0.08, 0.3,0.1,0.03,0.12] most likely belongs to the second
bottleneck class. For the composite bottleneck, more than
one class will have high probability above 0.5 threshold, e.g.
[0.1, 0.09, 0.89, 0.78, 0.19, 0.31, 0.17, 0.42,0.08,0.13]. This way,
any sample that does not belong to the any of the bottleneck
classes can me marked as unidentified. For example if the
output of the MLP for a sample is [0.21, 0.13, 0.4, 0.2, 0.09,
0.15, 0.32, 0.3,0.07,0.42] it would not belong to any of the
learned classes and would be “unidentified”. The model is
fitted using Adam optimiser [21] with learning rate 0.001,
and adopting cross-entropy as loss function over 200 train-
ing epochs. After model training, in the classification phase,
the classifier makes decisions on each input sample and de-
termines the bottleneck class that each sample (i.e. feature
vector) belongs to. The decision is based on the probability
generated by the output layer.

6 EVALUATION
6.1 Dataset
To evaluate our proposed system, we exploit three different
datasets based on the design choices described above.

6.1.1 UE-based Dataset. It comprises the measurements col-
lected by the UE (see Table 1). In the UE dataset, 8 features are
measured directly from UE namely, AvgRTT, Packet loss per-
centage, Transfer(MB), Bitrate(Mbps),Jitter(ms), RSRP, RSRQ,
and RSSNR. Inter packet gap (IPG) is a metric computed from
the monitored feature of AvgRTT. Our monitoring frequency
is every second, but for data analytics we take mean values
of the features in each 5 seconds window. For each of these
windows we compute other statistical metrics including me-
dian, skewness and kurtosis of all the primary features given
above, except of the radio quality indicators. The resulting UE
dataset consists of 28 features that we use for bottleneck de-
tection. Within this dataset 8,640 data samples were collected
under normal network conditions, i.e baseline. In the context
of this study a data sample denotes set of features that were
derived from a single 5 seconds window. 40,320 data samples
were collected when various bottlenecks were emulated in
the network.

6.1.2 Mobile Network Dataset. It contains themeasurements
collected from the components of mobile network, namely,
eNB, FlexRAN, SPGW-U and P4 switches. These measure-
ments were reported to the telemetry collector shown in Ta-
ble 1. Pre-processing steps are applied to the measurements
before feeding into the bottleneck identification model. Ini-
tially, we filtered out all the missing values and constant
features. In particular, we remove all configurations and iden-
tifiers variables such as cell_config.init_nr, cell_config._cell_id,
ue_config.rnti and imsi from the FlexRANmeasurements. Sec-
ondly we retained only one of the correlated features from
single monitoring point, for example, retaining kbmemused
and removing its correlated feature of kbavail from memory
usage features reported by Sysstat at SPGW-U. The switches
at S1-U and SGi perform INT and mirrors the modified pack-
ets to the telemetry controller, which not only retrieved the
INT features defined in the Table 1 but also computed met-
rics i.e., percentage of lost packets and uplink & downlink
jitter between INT packets coming from the two P4 switches.
Lastly for the measurements that we collected frequently,
that is every second, their statistical metrics including mean,
median, kurtosis and skewness were computed for every 5
seconds window. This resulted in a dataset consists of 76 fea-
tures. Just like user dataset, the final dataset from mobile
network consist of 48,960 data samples.

6.1.3 Network-wide Dataset. It combines all features from
both UE-based dataset and network dataset. It is used for

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Table 3: Performance of our proposed bottleneck iden-
tification system using different types of measure-
ments.

Dataset Bottleneck
detection

Bottleneck
classifica-
tion

P R F1 P R F1
UE-based 0.90 0.81 0.85 0.62 0.54 0.58
Mobile network-
based

0.92 0.87 0.89 0.90 0.88 0.89

Network-wide 0.94 0.89 0.91 0.95 0.91 0.93

investigating the trade-off between the centralized and de-
centralized system architechures.

6.2 Evaluation Metrics
To evaluate the performance of our bottleneck identifica-
tion framework, we use prediction (P), recall (R) and F1-
score (F1) [16]:

𝑃 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝐹1 = 2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅 ,

where TP is True Positives, FP is False Positives and FN is
False Negatives.
We formulate the composite bottlenecks as multi-label

classes, and use the following metrics to evaluate their clas-
sification accuracy:

• Hamming Loss: It is equal to the number of incorrect
predicted labels (TNIP) divided by the total number
of predictions (TNP). In hamming loss the smaller
the result, the better is the model.

𝐻𝑎𝑚𝑚𝑖𝑛𝑔 𝐿𝑜𝑠𝑠 = 𝑇𝑁𝐼𝑃
𝑇𝑁𝑃

• Exact Match Ratio (EMR): is the most strict metric,
indicating the percentage of samples that have all
their labels classified correctly. In our case, the two
single bottlenecks that form the composite have to
be classified correctly in order to be considered as
TP. The disadvantage of this measure is that multi-
class classification problems have a chance of being
partially correct, but here we ignore those partially
correct matches.

In the bottleneck detection, we define the threshold for anom-
aly score that provides the best F1 score.

6.3 UE-based vs. Mobile Network-based
Bottleneck Identification

First, we evaluate the performance of our proposed bot-
tleneck identification system based on UE measurements,

mobile network measurments and network-wide measure-
ments. For the bottleneck detection, we use our VAE model
defined in subsection 5.2. We train the model with base-
line measurements and test them using a mix of baseline
and bottleneck measurements. As shown in Table 3, VAE
demonstrates relatively excellent bottleneck detection capa-
bility and achieves 0.85, 0.89, and 0.91 F1 scores on UE-based
dataset, mobile network-based dataset and network-wide
dataset, respectively. Using network-wide measurements to
detect bottlenecks results in higher performance (7% F1-score
improvement) compared when using only UE-measurements.
This is because some types of bottlenecks such as low stress
and low loss at FlexRAN and SPGW-U are hardly being identi-
fied by UE as shown in Figure 3. This is also confirmed by the
distributions of UE measurements in Figure 4. For example,
UE measurements (Average RTT, Bitrate(Mbps), Packet loss
percentage and RSSNR) of low stress bottleneck at FlexRAN
and SPGWU have similar distribution to the measurements
of the baseline. Due to the same reason, the classification
model based on UE measurements shows very poor perfor-
mance of 58% F1-score compared with the network-based
and network-wide datasets. However, still UE measurements
demonstrate significant contribution in identifying other
types of bottlenecks. For example, bottleneck caused by radio
interference can be easily flagged by the monitored RSSNR by
the UE. Based on our proposed architecture in Figure 2, our
classification model can accurately identify and attribute 92%
of the bottlenecks when relying on network dataset.
Takeaways. Leveraging measurements at UE can help in
detecting bottlenecks with relatively good performance. The
bottleneck with low stress on the resources are, however,
exceedingly difficult to detect using solely UE measurements.
The stress on the resources is low enough to adversely impact
performance at user end. It needs measurements from rest
of the mobile network to identify and attribute both the high
and low impact bottlenecks.

6.4 Single and composite bottlenecks
identification.

Here, we dig deeper in understanding the performance of
our system on classifying single and composite bottlenecks
based on network-based measurements. Table 4 presents
the evaluation results per bottleneck type for single bottle-
necks. As shown in this table, based on mobile network-
based dataset our model is able to classify the defined bot-
tlenecks with high accuracy; F1 score is above 0.84 and in
most types above 0.9. A closer look reveals that the model
cannot distinguish the bottlenecks caused by loss at SPGW-U
with each other; i.e low and high losses resulting in more
FNs than the other types. Furthermore, the bottleneck due
to radio interference is showing lower value of 0.81 recall.

MahRukh Fida§§§*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

Figure 3: Contribution of measurements from differ-
ent points in the network in bottleneck identification
using SHAP framework [1]. The higher contribution
of measurements is made by larger hexagons.

Table 4: Performance evaluation of single bottleneck
classification.

Single Bottlenecks
Bottleneck class P R F1
S1-U congestion 0.94 0.88 0.91
SGi congestion 0.96 0.90 0.88
S1-U and SGi cong. 0.90 0.86 0.85
High SPGW-U stress 0.97 0.88 0.93
Low SPGW-U stress 0.87 0.84 0.85
High FlexRAN stress 0.96 0.90 0.93
Low FlexRAN stress 0.85 0.82 0.83
Low SPGW-U loss 0.85 0.83 0.84
High SPGW-U loss 0.86 0.88 0.87
Radio interference 0.89 0.81 0.84

Both Figure 3 and Figure 4 show that bottleneck gener-
ated by radio interference is mainly identified by UE mea-
surements, more specifically RSSNR metric. Features from
FlexRAN and eNB measurements too have partial contri-
bution in identifying bottlenecks caused by interference,
namely, pdcp_stats.pkt_tx_bytes and .wb_cqi
Next we evaluate the performance of composite bottle-

necks classification. These results are summarized in Table 5
using the EMR method and the hamming loss. Although, our
classifier shows superior performance in single bottlenecks
prediction, the performance is degraded in the case of the

Figure 4: Distribution of most important UE features
collected under different test scenarios.

composite. This is mainly due to our assumption that there
is no correlation between the single bottlenecks that form
the composite bottleneck. However, the hamming loss is still
showing that our model is able to detect high proportion of
the single bottlenecks that form the composite bottlenecks.
For example, in the case of SPGW-U stress/ FlexRAN stress
the hamming loss is 0.27 which means if there are 100 sam-
ples for composite bottlenecks, our the model will predict
incorrectly about 27% of the individual single bottleneck
classes. Furthermore, based on EMR metric we can observe
that the performance of the model in detecting composite

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Table 5: Performance evaluation of composite bottle-
neck classification.

Composite Bottlenecks

Bottleneck classes PEMR REMR F1EMR
Hamming
loss

SPGW-U stress,
FlexRAN stress 0.84 0.83 0.83 0.27

S1-U congestion,
FlexRAN stress 0.82 0.79 0.80 0.23

S1-U congestion,
High SPGW-U loss 0.80 0.77 0.78 0.20

SPGW-U stress,
High SPGW-U loss 0.77 0.71 0.73 0.25

bottleneck in the same location is marginally worse than the
case of different locations bottlenecks. For instance, {SPGW-U
stress, High SPGW-U loss} exhibits lower 𝐹1𝐸𝑀𝑅 which means
the model hardly can identify both bottlenecks, however it
still shows low hamming loss which indicates that the model
is able to identify at least one of the bottlenecks most of the
time.

6.5 Classification of unidentified
bottlenecks

In this experiment, we evaluate the efficiency of our model
in case of unidentified bottlenecks. We train our model using
a dataset labelled with 9 types of single bottlenecks from Ta-
ble 2. For evaluation we introduce the unidentified bottleneck
along with others being used in the training. Figure 5 shows
the average probabilities of classifying unidentified bottle-
necks per labelled bottlenecks. For example, if the unidenti-
fied bottleneck is S1-U congestion, our model predicts it as
SGi congestion with a probability of 0.21 which is rounded
to 0. In case of all probabilities below 0.5, the bottleneck is
marked as unidentified. Bottlenecks such as S1-U congestion,
SGi congestion and radio interference are classified as uniden-
tified bottlenecks with high accuracy (≈ 98%) if they are
not introduced into our model during training. On the other
hand, the model can identify the type and the location of the
bottleneck if it experiences the same bottleneck during train-
ing however with different severity. In our case, if the model
is trained with high stress at SPGW-U and tested against low
stress at SPGW-U, our model classifies it as high stress with
a confidence of 63%. This also applies to other bottlenecks
with different severity such as stress at FlexRAN and loss at
SPGW-U.

Figure 5: Average probability of each bottleneck classes
computed by the classificationmodel in case of uniden-
tified bottlenecks.

6.6 Active vs. P4 measurements
In our measurement dataset from mobile network the char-
acteristics of user flows on S1-U and SGi interface are moni-
tored in two ways i.e. by active monitoring and by P4 based
INT monitoring. Since active monitoring injects additional
load on the network links by interfering with the user data,
in this experiment we investigate the potential of P4 based
telemetry in replacing active monitoring.

Figure 6 depicts the classification accuracy when measure-
ment features from either active monitoring or P4 based
telemetry are used with rest of the measurement features.
When utilizing P4 based INT features, accuracy across the
various types of bottlenecks is comparable to that obtained
from active features.

7 DISCUSSION AND FUTUREWORKS
In this section we evaluate the overhead associated with our
distributed telemetry framework. We asses the framework
from the perspective of:

• Traffic overhead on the network links
• CPU and memory overhead on the cloudified mobile
network

• Computational overhead of the data analytics system
Telemetry comes with processing, memory and bandwidth

cost of different intensities. Passive monitoring only induce
bandwidth cost whenmeasurements are sent to an central en-
tity such as telemetry collector for data analytics. Compared
to passive monitoring, active monitoring places additional

MahRukh Fida§§§*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

Figure 6: Trade-off between active measurements and
P4 measurements.

overhead on network links by interfering with the actual
user traffic. In both cases less frequent and sporadic monitor-
ing is advised to reduce the cost []. Reduction of monitoring
frequency, however misses short lived anomalies. Our frame-
work, therefore leverages frequent monitoring at user end.
Once an anomaly is detected, the UE can then trigger cloud-
ified mobile network to enhance it monitoring frequency
so to localize source of performance degradation in case it
lies within its domain. To minimize processing and memory
overhead on the UE, the crowdsourced network coverage
and ping tests along with passive monitoring features of user
applications, can be off-loaded to an edge computing device.

Figure 8: Impact on data packets when a virtual P4
switch performs in-band network telemetry in a mo-
bile network.

8 RELATEDWORK
There is big interest in developing telemetry solutions for
Software-Defined Networking (SDN) based networks [4, 18,

26]. Advanced monitoring solutions have been proposed
to identify bottlenecks, while attempting to balance high
detection rates with minimal monitoring overhead costs.
z-TORCH [33] is an automated Network Function Vir-

tualization (NFV) orchestration solution utilizing Machine
Learning (ML) techniques to enhance quality of decisions in
Management and Orchestration (MANO) systems. It adapts
monitoring load based on Virtual Network Function (VNF)
profile time variations. CellScope [15] uses domain specific
knowledge to apply Multi-task Learning (i.e. use of several
models in parallel) on Radio Access Network (RAN) data.
They are able to perform RAN troubleshooting and mobile
phone energy bug diagnosis more efficiently compared to
contemporary solutions. The authors of [35] propose self-
tuning, adaptive monitoring mechanism that adjusts mea-
surement granularity based on observed traffic dynamics.

In-band Telemetry for Softwarised Networks. In the con-
text of mobile core networks, P4 switches have been used
for real-time attack detection and mitigation [2], enhancing
the User Plane Function (UPF) functionality [22] and en-
suring Quality-of-Service (QoS) at the slice level [30]. Loss-
Sight [34] tackles the problem of packet loss when using
Inband Network Telemetry (INT), through “Alternate Mark-
ing” the telemetry headers of each flow. They are able to
correctly identify and locate packet loss events, even when
telemetry information is lost alongside the packets carrying
it. There are also approaches that do not rely on P4. The
authors of [17] propose an extension to INT tuned for wire-
less multihop networks. Each node runs both a telemetry
module and an agent that defines the optimal local traffic
engineering policy.

AI Processing of Telemetry Data. To troubleshoot network
with anomalies in performance, knowledge about the causes
of anomalies is the necessary. [13] presents an Artificial In-
telligence (AI)-powered trustworthy distributed Self driving
network framework. The framework responds to P4 teleme-
try data and is able to modify the P4 code based on detected
events. M. Moulay et al. [23] propose an unsupervised ML
method, Troubleshoot Trees (TTrees), to classify the reason
of an anomaly in cellular performance with minimal amount
of data and quick training. For a set of Key Performance
Indicators (KPIs), TTree first uses a ML method to separate
instances that cannot be classified. Then it uses a cluster-
ing method to group these unclassified instances, that are
considered anomalies, into separate groups. At this latter
stage an expert should inspect the clusters and assign that
meaning [12].

Telemetry focused testbeds. Similar OpenAirInterface (OAI)-
based testbeds have been used to study applications of net-
work telemetry. The authors of [27] identify a range of

Bottleneck identification in cloudified mobile networks based on distributed telemetry

Figure 7: Distribution of P4 measurements collected under different experiments.

performance bottlenecks that 5G networks experience, by
gathering monitoring information at several layers of each
network component. Then they use machine learning to
map data sources to performance bottlenecks. [37] proposes
an exposed Monitor-Analyze-Plan-Execute with Knowledge
(MAPE-K) closed-loop model to automate Service Assurance,
across slices. It exposes monitoring information to slice own-
ers who are then able to provide their insights to the Analyze
module of the closed loop, enabling a more robust virtualized
network infrastructure. In contrast to the above, we enhance
the data collection with INT data provided by virtual P4
switches.

9 CONCLUSION
5G network has transformed the mobile network into a multi-
service architecture that supports diverse use cases with
varying requirements and needs to ensure that the Service
Level Agreements (SLA) of customized end-to-end sliced
services are met. This requires monitoring the resource us-
age and characteristics of data flows at the virtualized net-
work components and interfaces of its cloud mobile network,
as well as tracking the performance of its radio interfaces
and UEs. We implement our proposed telemetry architec-
ture on a software defined virtualised testbed that resembles
a cloudified mobile network. Further, monitored data are

MahRukh Fida§§§*, Azza H. Ahmed*, Thomas Dreibholz, Andrés F. Ocampo, Foivos I. Michelinakis, and Ahmed Elmokashfi

Figure 9: An example of end-to-end performance data
frommobile broadband network. The time series spans
3 minutes and have one second granularity. A non-
frequent monitoring may not trigger a performance
issue, until it deteriorates

used to evaluate our bottleneck identification framework.
Although the centralized architecture which combines all
measurements from UE and mobile network (i.e network-
wide dataset) shows superior performance results in both
bottleneck detection and classification, our distributed frame-
work still demonstrates comparable accuracy while keeping
system overhead minimal.

REFERENCES
[1] Liat Antwarg, Ronnie Mindlin Miller, Bracha Shapira, and Lior Rokach.

2019. Explaining anomalies detected by autoencoders using SHAP.
arXiv preprint arXiv:1903.02407 (2019).

[2] Michel Bonfim, Marcelo Santos, Kelvin Dias, and Stenio Fernandes.
2020. A real-time attack defense framework for 5G network slicing.
Software: Practice and Experience 50, 7 (2020), 1228–1257.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, et al. 2014. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communication Review 44, 3
(2014), 87–95.

[4] Raouf Boutaba, Nashid Shahriar, Mohammad A Salahuddin, Shi-
habur R Chowdhury, Niloy Saha, andAlexander James. 2021. AI-driven
Closed-loop Automation in 5G and beyond Mobile Networks. In Pro-
ceedings of the 4th FlexNets Workshop on Flexible Networks Artificial
Intelligence Supported Network Flexibility and Agility. 1–6.

[5] Mihai Budiu and Chris Dodd. 2017. The P4-16 Programming Language.
ACM SIGOPS Operating Systems Review 51, 1 (2017), 5–14.

[6] Thomas Dreibholz. 2020. A 4G/5G Packet Core as VNF with Open
Source MANO and OpenAirInterface. In Proceedings of the 28th IEEE
International Conference on Software, Telecommunications and Com-
puter Networks (SoftCOM). Hvar, Dalmacija/Croatia, 3 pages. https:
//doi.org/10.23919/SoftCOM50211.2020.9238222

[7] Thomas Dreibholz. 2020. Flexible 4G/5G Testbed Setup for Mobile
Edge Computing using OpenAirInterface and Open Source MANO. In
Proceedings of the 2nd International Workshop on Recent Advances for
Multi-Clouds and Mobile Edge Computing (M2EC) in conjunction with
the 34th International Conference on Advanced Information Networking
and Applications (AINA). Caserta, Campania/Italy, 1143–1153. https:
//doi.org/10.1007/978-3-030-44038-1_105

[8] Thomas Dreibholz. 2020. HiPerConTracer - A Versatile Tool for
IP Connectivity Tracing in Multi-Path Setups. In Proceedings of the
28th IEEE International Conference on Software, Telecommunications
and Computer Networks (SoftCOM). Hvar, Dalmacija/Croatia, 6 pages.
https://doi.org/10.23919/SoftCOM50211.2020.9238278

[9] Mah-Rukh Fida, Andres F. Ocampo, and Ahmed Elmokashfi. 2022.
Measuring and Localising Congestion in Mobile Broadband Networks.
IEEE Transactions on Network and Service Management 19, 1 (2022),
366–380. https://doi.org/10.1109/TNSM.2021.3115722

[10] Xenofon Foukas, Georgios Patounas, Ahmed Elmokashfi, and Ma-
hesh K. Marina. 2017. Network slicing in 5G: Survey and Challenges.
IEEE Communications Magazine 55, 5 (2017), 94–100.

[11] Sébastien Godard. 2022. Sysstat Tutorial. http://sebastien.godard.
pagesperso-orange.fr/tutorial.html

[12] TPAW Group et al. 2020. In-band Network Telemetry (INT) data plane
specification.

[13] Othmane Hireche, Chafika Benzaïd, and Tarik Taleb. 2022. Deep data
plane programming and AI for zero-trust self-driven networking in
beyond 5G. Computer Networks 203 (2022), 108668.

[14] Matthias Hirth, Tobias Hossfeld, Marco Mellia, Christian Schwartz,
and Frank Lehrieder. 2015. Crowdsourced network measurements:
Benefits and best practices. Computer Networks 90 (07 2015). https:
//doi.org/10.1016/j.comnet.2015.07.003

[15] Anand Padmanabha Iyer, Li Erran Li, Mosharaf Chowdhury, and Ion
Stoica. 2018. Mitigating the Latency-Accuracy Trade-off in Mobile
Data Analytics Systems. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking (New Delhi, India)
(MobiCom ’18). ACM, New York, NY, USA, 513–528. https://doi.org/
10.1145/3241539.3241581

[16] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
2013. An Introduction to Statistical Learning. Vol. 112. Springer.

[17] Prabhu Janakaraj, Pinyarash Pinyoanuntapong, Pu Wang, and Min-
woo Lee. 2020. Towards in-band telemetry for self driving wireless
networks. In IEEE INFOCOM 2020-IEEE Conference on Computer Com-
munications Workshops (INFOCOM WKSHPS). IEEE, 766–773.

[18] Grigorios Kakkavas, Adamantia Stamou, Vasileios Karyotis, and
Symeon Papavassiliou. 2021. Network tomography for efficient mon-
itoring in SDN-enabled 5G networks and beyond: Challenges and
opportunities. IEEE Communications Magazine 59, 3 (2021), 70–76.

[19] Changhoon Kim, Anirudh Sivaraman, Naga Katta, Antonin Bas, Advait
Dixit, and Lawrence J. Wobker. 2015. In-band network telemetry via
programmable dataplanes. In ACM SIGCOMM, Vol. 15. 2 pages.

[20] Colin Ian King. 2022. stress-ng. https://wiki.ubuntu.com/Kernel/
Reference/stress-ng

[21] Diederik P Kingma and JimmyBa. 2014. Adam: Amethod for stochastic
optimization. arXiv preprint arXiv:1412.6980 (2014).

[22] Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Pad-
manabhan, Ajay Thakur, Larry Peterson, Jennifer Rexford, and Oguz
Sunay. 2021. A P4-based 5G User Plane Function. In Proceedings of the
ACM SIGCOMM Symposium on SDN Research (SOSR). 162–168.

[23] Mohamed Moulay, Rafael García, Vincenzo Mancuso, Pablo Rojo, and
Antonio Fernández Anta. 2021. TTrees: Automated Classification of
Causes of Network Anomalies with Little Data. In 22nd IEEE Inter-
national Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM 2021).

Bottleneck identification in cloudified mobile networks based on distributed telemetry

[24] OpenAirInterface. 2019. How to Connect OAI eNB (USRP B210) with
COTS UE.

[25] OpenStack. 2020. OpenStack Installation Guide.
[26] Francesco Paolucci, Filippo Cugini, Piero Castoldi, and Tomasz Osiński.

2021. Enhancing 5G SDN/NFV edge with P4 data plane programma-
bility. IEEE Network 35, 3 (2021), 154–160.

[27] Georgios Patounas, Xenofon Foukas, Ahmed Elmokashfi, and Ma-
hesh K. Marina. 2020. Characterization and Identification of Cloud-
ified Mobile Network Performance Bottlenecks. IEEE Transactions
on Network and Service Management 17, 4 (2020), 2567–2583. https:
//doi.org/10.1109/TNSM.2020.3018538

[28] Jonathan Bruce Postel. 1981. Internet Protocol. RFC 791. IETF. https:
//doi.org/10.17487/RFC0791

[29] Andy Reid, Andrés González, Antonio Elizondo Armengol, Ger-
ardo García de Blas, Min Xie, Pål Grønsund, Peter Willis, Phil Eardley,
and Francisco-Javier Ramón Salguero. 2019. OSM Scope, Functionality,
Operation and Integration Guidelines. White Paper. ETSI.

[30] Ruben Ricart-Sanchez, Pedro Malagon, Antonio Matencio-Escolar,
Jose M Alcaraz Calero, and Qi Wang. 2020. Toward hardware-
accelerated QoS-aware 5G network slicing based on data plane pro-
grammability. Transactions on Emerging Telecommunications Technolo-
gies 31, 1 (2020), e3726.

[31] Mohammad Azmi Ridwan, Nurul Asyikin Mohamed Radzi, Fairuz
Abdullah, and YE Jalil. 2021. Applications of machine learning in
networking: A survey of current issues and future challenges. IEEE
Access 9 (2021), 52523–52556.

[32] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. 1985.
Learning internal representations by error propagation. Technical Re-
port. California Univ San Diego La Jolla Inst for Cognitive Science.

[33] Vincenzo Sciancalepore et al. 2018. z-TORCH: An Automated NFV
Orchestration and Monitoring Solution. IEEE Transactions on Network

and Service Management (2018).
[34] Lizhuang Tan, Wei Su, Wei Zhang, Huiling Shi, Jingying Miao, and

Pilar Manzanares-Lopez. 2021. A packet loss monitoring system for
in-band network telemetry: Detection, localization, diagnosis and
recovery. IEEE Transactions on Network and Service Management 18, 4
(2021), 4151–4168.

[35] Gioacchino Tangari, Daphne Tuncer, Marinos Charalambides, Yuan-
shunle Qi, and George Pavlou. 2018. Self-Adaptive Decentralized
Monitoring in Software-Defined Networks. IEEE Transactions on
Network and Service Management 15, 4 (2018), 1277–1291. https:
//doi.org/10.1109/TNSM.2018.2874813

[36] Min Xie, Thomas Dreibholz, Foivos Ioannis Michelinakis, Joan Pujol-
Roig, Wint Yi Poe, Ahmed Mustafa Elmokashfi, Sayantini Majum-
dar, and Sara Malacarne. 2021. An Exposed Closed-Loop Model
for Customer-Driven Service Assurance Automation. In Proceedings
of the 30th IEEE European Conference on Networks and Communi-
cations (EuCNC). Porto/Portugal, 419–424. https://doi.org/10.1109/
EuCNC/6GSummit51104.2021.9482533

[37] Min Xie, Foivos Michelinakis, Thomas Dreibholz, Joan S Pujol-Roig,
Sara Malacarne, Sayantini Majumdar, Wint Yi Poe, and Ahmed M
Elmokashfi. 2021. An Exposed Closed-Loop Model for Customer-
Driven Service Assurance Automation. In 2021 Joint European Con-
ference on Networks and Communications & 6G Summit (EuCNC/6G
Summit). IEEE, 419–424.

[38] Min Xie, Joan Sebastià Pujol-Roig, Foivos Ioannis Michelinakis,
ThomasDreibholz, CarmenGuerrero, AdriánGallego Sánchez,Wint Yi
Poe, Yue Wang, and Ahmed Mustafa Elmokashfi. 2020. AI-Driven
Closed-Loop Service Assurance with Service Exposures. In Proceed-
ings of the 29th IEEE European Conference on Networks and Commu-
nications (EuCNC). Dubrovnik, Dubrovnik-Neretva/Croatia, 265–270.
https://doi.org/10.1109/EuCNC48522.2020.9200943

	Preface
	Abstract
	Sammendrag
	Acknowledgements
	List of Articles
	Part I:Research Overview
	Contents
	List of Figures
	Chapter 1: Introduction
	Motivation
	Thesis Scope and Research Questions
	Research Methodology
	Thesis Outline

	Chapter 2: Background
	Self-driving Networks
	Main Components
	Enabling Technologies to Realize Self-driving Networks

	Machine Learning for Network Management and Control
	Supervised Learning
	Unsupervised Learning
	Reinforcement Learning

	Chapter 3: Related Work and Research Contributions
	Anomaly Detection in Communication Networks
	Time series Anomaly Detection Methods
	Anomaly Detection Methods for Mobile Network Performance

	Deep Reinforcement Learning in Mobile Network Management and Control
	AI-based Data Analytic in Telemetry

	Chapter 4: Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Part II: Research Papers
	Article I
	Article II
	Article III
	Article IV
	Article V
	3547115.3547193.pdf
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Description of system
	3.2 Data description
	3.3 Data preprocessing
	3.4 Model description

	4 Performance evaluation
	4.1 Evaluation metrics
	4.2 Accuracy and Feature importance
	4.3 Extrapolation
	4.4 Processing performance

	5 Discussion
	6 Conclusion
	References

	3534678.3539097.pdf
	Abstract
	1 Introduction
	2 Related Work
	3 PRELIMINARIES
	3.1 Problem Statement
	3.2 Basics of Hierarchical Temporal Memory (HTM)
	3.3 Related Collaborative Machine Learning Methods

	4 Design of RCAD
	4.1 Data Collection
	4.2 Online Anomaly Detection
	4.3 Decision Unit for Model Replacement

	5 EXPERIMENTS
	5.1 Dataset
	5.2 Evaluation Metrics
	5.3 Results and Analysis

	6 Conclusion
	References
	A Supplementray Material for Reproducibility
	A.1 Datasets
	A.2 Hierarchical Temporal Memory (HTM) Implementation
	A.3 Reinforcement Learning Agent Implementation for Model Exchange

	Blank Page

