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Abstract 
With the ready availability of multiple radio interfaces in today's smart devices, there is a 

growing number of hosts that can support data communication over two or more interfaces. 

Nonetheless, the classical transport protocols such as TCP, UDP, and the emerging QUIC still 

only utilize one interface at a time for data communication. In the past few years, the advents 

of multipath transport protocols begin to fill such a gap thanks to the proposals, standardizations, 

and deployments from academia and industry. Multipath transport protocols allow the 

concurrent use of multiple network paths for fast and reliable data exchange, potentially 

improving the performance and resilience of Internet traffic flows. Among the functionalities 

of multipath transport protocols, the multipath scheduler plays a key role since it controls the 

distribution of data packets over different network paths. Scheduling problem becomes quite 

challenging for existing multipath schedulers that are designed based on predefined rules 

considering the dynamic path characteristics (e.g., time-varying bandwidth, delay, and packet 

loss) of 5G and beyond networks. In this thesis, we focus on adaptive multipath scheduling 

algorithms, tackling the challenges brought from dynamic 5G networks and beyond. 

 

Firstly, to understand the context of our work, we conduct a survey on multipath transport for 

5G networks, where the network path can present in the form of 4G, 5G, and WLAN. 

Specifically, we discuss how the literature on multipath transport maps to specific 5G steering 

functionalities and slice service types, paving the way for applying multipath transport for 5G 

and beyond. The survey acknowledges the necessity to design an adaptive multipath scheduler 

for dynamic network paths and points out the learning-based design as a potential solution. 

 

Next, following a learning-based design, we start from the case where dynamic network paths 

are heterogeneous, e.g., 4G and WLAN. To this end, we propose Peekaboo, a novel online 

learning-based multipath scheduler that is able to learn scheduling decisions to adopt from both 

deterministic and stochastic aspects. From the emulations and real-world examinations, we 

demonstrate the superiority of Peekaboo over the multipath schedulers based on predefined 

rules. However, we acknowledge, from the experiments, the superiority of Peekaboo mainly 

exists within the heterogeneous networks. 

 

Then, we extend the adaptive multipath scheduler's applicable scenarios to also generic 

dynamic network paths, aiming for different types of path combinations that can appear in 5G. 



To this end, we propose M-Peekaboo with a generic path selection scheme by generalizing the 

learning framework of Peekaboo. From the 5G-trace-driven emulations across both static and 

mobile scenarios, we demonstrate the benefits of M-Peekaboo over Peekaboo and the multipath 

schedulers based on predefined rules. However, due to the online learning essences of Peekaboo 

and M-Peekaboo, we acknowledge that neither of them can adapt sufficiently fast to match the 

rapidly changing networks. 

 

Finally, to fill such a gap, we propose FALCON, which uses offline learning for deriving meta-

models that are fine-tuned by online learning to improve the quality and speed of adaptation 

simultaneously. From the 5G-trace-driven emulations across both static and mobile scenarios 

and real-world examinations, FALCON is shown to have a much shorter adaptation time and 

better adaptation accuracy than M-Peekaboo and other newly proposed learning-based 

multipath schedulers that appeared during the writing of this thesis. 

  



Sammendrag 
Med den tilgjengelige tilgjengeligheten av flere radiogrensesnitt i dagens smarte enheter, er det 

et økende antall verter som kan støtte datakommunikasjon over to eller flere grensesnitt. Ikke 

desto mindre bruker de klassiske transportprotokollene som TCP, UDP og den nye QUIC 

fortsatt bare ett grensesnitt om gangen for datakommunikasjon. I løpet av de siste årene har 

fremskrittene med flerveis transportprotokoller begynt å fylle et slikt hull takket være 

forslagene, standardiseringene og distribusjonene fra akademia og industri. Multipath 

transportprotokoller tillater samtidig bruk av flere nettverksbaner for rask og pålitelig 

datautveksling, noe som potensielt forbedrer ytelsen og motstandskraften til 

internettrafikkstrømmer. Blant funksjonalitetene til flerbanetransportprotokoller spiller 

flerbaneplanleggeren en nøkkelrolle siden den styrer fordelingen av datapakker over 

forskjellige nettverksbaner. Planleggingsproblem blir ganske utfordrende for eksisterende 

flerbaneplanleggere som er designet basert på forhåndsdefinerte regler med tanke på de 

dynamiske banegenskapene (f.eks. Tidsvarierende båndbredde, forsinkelse og tap av pakker) 

for 5G og utover nettverk. I denne oppgaven fokuserer vi på adaptive 

flerbaneplanleggingsalgoritmer, og takler utfordringene fra dynamiske 5G -nettverk og videre. 

 

For det første, for å forstå konteksten i arbeidet vårt, gjennomfører vi en undersøkelse om 

flerveis transport for 5G -nettverk, der nettverksbanen kan presenteres i form av 4G, 5G og 

WLAN. Spesielt diskuterer vi hvordan litteraturen om flerveis transportkart til spesifikke 5G -

styringsfunksjoner og skive tjenestetyper, baner vei for å anvende flerveis transport for 5G og 

utover. Undersøkelsen erkjenner nødvendigheten av å designe en adaptiv flerbaneplanlegger 

for dynamiske nettverksbaner og peker på det læringsbaserte designet som en potensiell løsning. 

 

Etter et læringsbasert design starter vi ut fra det tilfellet der dynamiske nettverksbaner er 

heterogene, f.eks. 4G og WLAN. For dette formål foreslår vi Peekaboo, en ny online 

læringsbasert flerbaneplanlegger som er i stand til å lære planleggingsbeslutninger å ta fra både 

deterministiske og stokastiske aspekter. Fra emuleringene og virkelige undersøkelser 

demonstrerer vi Peekaboo sin overlegenhet i forhold til flerbaneplanleggerne basert på 

forhåndsdefinerte regler. Imidlertid erkjenner vi, fra eksperimentene, at Peekaboo -

overlegenhet hovedsakelig eksisterer i de heterogene nettverkene. 

 



Deretter utvider vi de adaptive flerbaneplanleggerens gjeldende scenarier til også generiske 

dynamiske nettverksbaner, med sikte på forskjellige typer banekombinasjoner som kan vises i 

5G. For dette formål foreslår vi M-Peekaboo med en generisk stievalgordning ved å 

generalisere læringsrammen til Peekaboo. Fra de 5G-spor-drevne emuleringene på tvers av 

både statiske og mobile scenarier demonstrerer vi fordelene med M-Peekaboo fremfor 

Peekaboo og flerbaneplanleggerne basert på forhåndsdefinerte regler. På grunn av de 

elektroniske læringsessensene til Peekaboo og M-Peekaboo, erkjenner vi imidlertid at ingen av 

dem kan tilpasse seg tilstrekkelig raskt for å matche de raskt skiftende nettverkene. 

 

Til slutt, for å fylle et slikt gap, foreslår vi FALCON, som bruker offline læring for å utlede 

metamodeller som er finjustert av online læring for å forbedre kvaliteten og hastigheten på 

tilpasning samtidig. Fra 5G-spor-drevne emuleringer på tvers av både statiske og mobile 

scenarier og virkelige undersøkelser, har FALCON vist seg å ha en mye kortere tilpasningstid 

og bedre tilpasningsnøyaktighet enn M-Peekaboo og andre nylig foreslåtte læringsbaserte 

flerbaneplanleggere som dukket opp under skrivingen av denne oppgaven. 
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1 Introduction 
The Internet was originally designed as a “two-connected net”, thus guaranteeing that no single 

failure would cause any non-failed portion of the network to lose connectivity [1]. Practically, 

any source-destination pair should follow the multipath transmission paradigm to at least ensure 

the resiliency of the network and possibly enhance the throughput and decrease the delay, etc.  

Over the years, many technologies emerge from different layers of the network stack to achieve 

multipath transmission. From the perspective of the transport layer, the classical transport 

protocol such as Transmission Control Protocol (TCP) and the emerging QUIC, however, still 

assume that the host can only use one interface at a time. This is in sharp contrast with the 

proliferation of smart devices equipped with multiple radio interfaces, e.g., the WLAN and the 

cellular interface. The advent of multipath transport protocols, such as Multipath TCP (MPTCP) 

and Multipath QUIC (MPQUIC) fills such a mismatch. The multipath transport protocols can 

concurrently use multiple network paths, enabling the potential of fast and reliable data 

communication.  

Meanwhile, the 5th Generation of mobile communications (5G) raises the expectations towards 

connecting the whole society and exploits multiple technologies to be able to accommodate the 

requirements of a wide range of services. 5G centralizes three major performance aspects: very 

high data rates, ultra-reliable and low latency, and massive connectivity; and, correspondingly, 

provides three services, including enhanced Mobile Broadband (eMBB), Ultra Reliable Low-

Latency Communications (URLLC), and massive Machine Type Communications (mMTC). 

To fulfill these performance aspects, several enhancements have been proposed both in radio 

access and core networks [2] [3] [4]. Multi-connectivity, as one of the prominent technologies 

among these, can use multiple radio access technologies at the same time. Already investigated 

in the pre-5G era, multi-connectivity focuses more on the solutions at the radio level. Recently, 

the proposal of Access Traffic Steering, Switching, and Splitting (ATSSS) at Release 16 or the 

3rd Generation Partnership Project (3GPP) foresees the 5G Core network’s support for multipath 

transport protocols on 3GPP and non-3GPP networks [5]. Therefore, the role of multipath 

transport protocols in 5G is expected to become particularly significant. 

1.1 Scope 
Among several functionalities within the multipath transport protocol, the multipath scheduler 

plays the key role of efficiently distributing data over different paths. The data packets from the 
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application reside in the send buffer, and the scheduler assigns each packet to a different 

interface based on a particular scheduling policy, ultimately impacting the achievable 

performance in terms of experienced throughput, latency, and connection reliability. In this 

thesis, we focus on the design of multipath scheduler for 5G networks and beyond. 

1.2 Objective 
The thesis aims to design a high-performing multipath scheduler that ultimately aids 5G to 

achieve qualified services for eMBB, URLLC, and mMTC. The design of a high-performing 

multipath scheduler is however a challenging problem, especially under 5G networks where, 

e.g., the use of millimeter wave (mmWave) [6] shapes a highly time-varying channel. Under 

such a condition, the multipath scheduler should adapt its scheduling policy with the time-

varying channel accordingly. 

 

Existing multipath schedulers employ predefined rules to select the best path to use under some 

specific network conditions and, thus, often result in a coarse-grained scheduling policy that 

might not fully suit the current network conditions, particularly when network conditions vary 

rapidly along the time scale. Under this context, the thesis specifically aims to design an 

adaptive multipath scheduler for 5G networks and beyond. We choose to design the adaptative 

multipath scheduler from the learning perspective due to its potential to learn and fit well to the 

given network conditions. Further, the thesis aims to validate the designed scheduler by 

operating upon diverse emulated and real 5G network scenarios with different applications. 

1.3 Structure 
The rest of the thesis is organized as follows. Section  

2 presents the background of this thesis including 5G, multi-connectivity in 5G, and multipath 

transport protocols with different components. Section 3 outlines the research questions of this 

thesis and Section 4 discusses the research methodologies that we applied. Section 5 presents 

our contributions in the context of related work. Section 6 concludes our work, presents the 

limitations of our research, and, based on the limitations, presents the possible future work. 

2 Background 
This section presents the background of this thesis. Section 2.1 presents the bird’s-eye view of 

5G. Section 2.2 presents the multi-connectivity which is one of the paradigms that seeks to meet 
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the requirements in 5G. Among different technologies utilized in multi-connectivity, the 

multipath transport protocol is one of the prominent technologies. Section 2.3 goes on to 

describe multipath transport protocols with their various components including path 

management, congestion control, scheduling, which is the research focus of this thesis, and 

reliable transfer. 

2.1 Bird’s-Eye View of 5G 
Early in 2012, the International Telecommunication Union Radiocommunication Sector (ITU-

R) launched a program to build "International Mobile Telecommunications (IMT) for 2020 and 

Beyond ", laying the groundwork for 5G research and development to take off globally. In 2015, 

ITU-R issued the overall objective of IMT for 2020 and Beyond [7] that should be resolved in 

5G. Therein, the ITU divides 5G into three services: enhanced Mobile Broadband (eMBB), 

Ultra-Reliable Low-Latency Communications (URLLC), and massive Machine Type 

Communications (mMTC). From the use cases’ perspective, eMBB focuses on services with 

high bandwidth requirements, such as high definition (HD) video streaming and 

virtual/augmented reality (VR/AR) applications, to address people's demand for a more 

digitally connected lifestyle; URLLC focuses on latency-sensitive and high-reliability services  

such as assisted and automated driving, remote robotics, and mission-critical applications, to 

meet digital industry demands; mMTC focuses on services that require a high level of 

connectivity, such as smart cities and smart agriculture, to address the needs of a fully connected 

digital society. Figure 1 shows some hypothetical use cases for these three categories, with the 

topological relationship shown as a triangle.  

 

From the key capability’s perspective, the user-experienced data rate, area traffic capacity, peak 

data rate, mobility, energy efficiency, and spectrum efficiency are all important factors in 

eMBB. Low latency is a top priority in various industrially vital applications at URLLC. Some 

high mobility use cases, such as transportation safety, would also necessitate this crucial 

capability. High connection density is required in mMTC to enable a large number of devices,  

 



6 

 
Figure 1. 5G services and corresponding reference use cases [7]. 

 

 
Figure 2. Key capability comparison among 5G services [7]. 

such as Internet of Things (IoT), that may use the radio access network intermittently to send 

small to large amounts of data under low mobility. Figure 2 shows the comparison of each key 

capability for eMBB, URLLC and mMTC.  

 

While ITU-R sets up the general requirements of 5G, 3GPP makes the formal specifications to 

meet these requirements. Particularly, 3GPP adopts the concept of network slicing to map the 

5G services into the Public Land Mobile Network (PLMN) with different Slice Service Types 

(SSTs) [5]. Different SSTs operate within the network slicing architecture that enables the 

multiplexing of SST-dedicated logical networks on the same physical network infrastructure 

[8]. Several multiplexing approaches [9] [10] [11] including Puncturing, Superposition, and 

Orthogonal scheduling have been proposed to achieve the objective of 5G services’ coexistence.   
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In aforementioned 5G services, key enhancing capabilities related to throughput, latency or 

reliability may partially depend on the 5G system, e.g., radio frequency bands to achieve higher 

throughput, the radio protocol stack itself, e.g., guaranteeing that all services can coexist. Other 

aspects however may be tackled by improving the interconnection and intersection between the 

5G system and other infrastructure services, e.g., allowing service hosting on the 5G system 

from services outside the Internet, or allowing 5G systems to leverage existing distributed cloud 

infrastructures for their own operation. From a different perspective, how UEs connect and use 

the 5G system can be further leveraged. One of the technologies to accomplish the latter aspect 

is the multi-connectivity which will be elaborated in the next subsection.  

2.2 Multi-connectivity in 5G 
Multi-connectivity uses multiple Radio Access Technologies (RATs) at the same time [3] to 

provide not only improved QoS for users, but also better load balancing between available 

RATs on the network side, thus helping to meet the 5G objectives. 

 

One of the earliest multi-connectivity solutions is the Access Network Discovery and Selection 

Function (ANDSF), which was introduced in 3GPP Release 9 [12]. ANDSF is an optional 

component of the core network that provides end users with context information about non-

3GPP systems (e.g., Wireless Local Area Network (WLAN)) to promote interoperability 

between diverse access networks. Coordinated Multi-Point (CoMP), which was introduced in 

3GPP Release 11 [13], allows many base stations to transmit (or receive) the same data to a UE 

in parallel, increasing communication quality in locations with poor coverage. CoMP lies across 

physical and MAC layers. After that, Dual Connectivity (DC), introduced in 3GPP Release 12 

[14], is operated in the above Packet Data Convergence Protocol (PDCP) layer and allows a 

UE to use two not co-located Long-Term Evolution (LTE) access nodes, e.g., two evolved Node 

Bs (eNBs). The Master eNB ends the control plane in the LTE core and coordinates with the 

Secondary eNB to give the UE additional radio resources. Similar solutions for non-3GPP 

access are introduced in 3GPP Release 13 [15] and are expanded in 3GPP Release 14 [16]. 

They are referred to as LTE-WLAN Aggregation (LWA) and LTE-WLAN radio-level 

integration with IP security tunnel (LWIP). The WLAN access point in both circumstances has 

a similar scope to a Secondary eNB in DC and can be co-located with the primary access node 

or not. The cellular network receives WLAN-related measurements from the user device and  
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Figure 3. High-level view of Above-the-core and Core-centric integration options in 5G. For 

the second option, the main 5G functional blocks involved in the ATSSS architecture are 

reported in [5]. 

decides whether or not to activate the multi-connectivity option. The WLAN traffic is managed 

within the LTE system via specific adaptation protocols [17]. Mechanisms similar to LWA and  

LWIP can be envisioned for 5G [18]. However, initial proposals in 3GPP Release 15 [19] 

focuses on cellular access and have led to extending DC to support parallel use of LTE and 5G 

New Radio (NR). 

 

Along with the above solutions at the radio level, the multipath transport protocol [20] [21] [22] 

can also be utilized to achieve the 5G multi-connectivity. Via multipath transport protocols, two 

main integration approaches are available, namely Above-the-Core and Core-Centric. In the 

Above-the-Core integration, the multipath transport protocol is deployed at the client and the 

server sides, and the aggregation of different paths occurs in between. In the Core-Centric 

integration, the multipath transport protocol is deployed at the client and 5G Core, and single 

path transport is between the core network and the server. A high-level view of both approaches 

is shown in Figure 3, with orange and green dashed lines representing Above-the-Core and 

Core-Centric, respectively. The Above-the-Core integration has been prevalent in academia and 

industry [23] [24] [25] [26] [27] [28] [29] [30] [31] [32], subjecting to the original end-to-end 

deployment architecture of multipath transport protocols. The Core-Centric integration, as 

highlighted by several use cases [33] [34], is a stronger candidate to be adopted in 5G systems, 



9 

since it enables a more direct control of multi-connectivity within the cellular system. 3GPP 

has specified the ATSSS in TS 23.501 [5], as an instantiation of the Core-Centric approach. 

The significant concept being introduced is the Multi-Access Protocol Data Unit (MA PDU) 

session. The MA PDU session generalizes the single-access PDU session and allows an 

application to send/receive traffic over 3GPP access, non-3GPP access, or both concurrently. 

The MA PDU session is enabled in the ATSSS architecture. It is established between the User 

Equipment (UE) and User Plane Function (UPF), with both 3GPP and non-3GPP access 

networks in the middle. Other 5G core network functions are involved in the ATSSS operation, 

i.e., Access and Mobility Management Function (AMF), Session Management Function (SMF), 

and Policy Control function (PCF). As shown in Figure 3, the PCF controls ATSSS by 

delivering the policy rule to the SMF. The policy rule, shared by the SMF with the UE (uplink) 

or the UPF (downlink), contains the indication on which ATSSS steering function and steering 

mode to adopt.  

 

With the notion of MA PDU introduced by ATSSS, there are several options for fine grained 

control of data flows to be served over one or more access networks. Steering selects, across 

several available access networks, the one that better fulfills a certain mode, e.g., smallest delay, 

etc. Switching takes a hard decision to abandon one of the access networks and invariably use 

either one access network or another, e.g., enabling connection migration and handover 

mechanisms. Splitting allows for using (two or more) access networks simultaneously, 

transferring different parts of a data flow on each available access network.  

 

TS 23.501 defines two ways of implementing steering functionalities: a) the use of a multipath 

transport protocol, above the IP layer, and b) the use of a so-called ATSSS Lower Layer 

(ATSSS-LL), below the IP layer. In the case of multipath transport, as shown in Figure 3, the 

UE and UPF communicate through the Multipath Transport Function (in the UE) and the 

Multipath Transport Proxy Function (in the UPF). In the case of ATSSS-LL, the UE and UPF 

communicate with each other via the combination of ATSSS-LL Function of the UE and UPF. 

In addition, UPF supports Performance Measurement Functionality (PMF), that may be used 

by the MA PDU session to obtain access performance measurements over 3GPP and/or non-

3GPP access networks. 

 

In terms of steering modes, TS 23.501 defines four different modes that can be used with 

ATSSS, as follows: 
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• Active-Standby: The traffic of an MA-PDU session is sent to one access network only, 

referred to as "active" access. The other access network is in "standby" and takes traffic 

only when the active one is unavailable. The active access is defined when the MA-

PDU session is established and can remain the same or change during the session 

lifetime; 

• Priority-based: Some  priority weights are assigned to the available access networks  

either statically during the establishment of a MA-PDU session or dynamically during 

the lifetime of a MA-PDU session. The traffic is managed by the higher priority access; 

however, when it is congested or unavailable, the traffic is redirected onto the lower 

priority access; 

• Smallest Delay: The used access network is the one providing the shortest Round Trip 

Time (RTT). It conceptually belongs to the Priority-based mode but, in this case, the 

higher priority access is determined dynamically in the lifetime of an MA-PDU session, 

based on RTT measurements; 

• Load-balancing: Each access network receives a percentage of the data of the MA-PDU 

session, depending on the assigned weight factor.  

 

To sum up, the steering functionality can play the role of multipath scheduling. And the existing 

steering functionality is foreseen to be enriched as the existing steering functionalities only 

contain the basic type of scheduling approaches compared with approaches presented in the 

literature. The design of the multipath scheduling approach in this thesis is therefore also 

possible to be integrated within the 5G ATSSS as a type of steering functionality. 

2.3 Multipath Transport Protocol 
Multipath transport protocols leverage several network paths simultaneously and seamlessly to 

improve both communication throughput and resilience. Figure 4 depicts a high-level 

representation of the single path (left-hand side) and the multipath (right-hand side) protocol 

stacks. Nowadays, three main multipath protocols have been widely explored, i.e., Concurrent 

Multipath Transfer SCTP (CMT-SCTP) [35] [36], Multipath TCP (MPTCP) [37], and 

Multipath QUIC (MPQUIC) [38] [39]. Recently, Internet Engineering Task Force (IETF) has 

also established the working group on extending the Datagram Congestion Control Protocol 

(DCCP) to support the multipath operation, aiming to deliver Multipath DCCP (MP-DCCP) 

[40]. 
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Figure 4. Single path and multipath transport protocol stack representations. 

As an extension of SCTP, CMT-SCTP is one of the first multipath transport protocols. SCTP 

already supported some multipath capabilities, i.e., failover and mobility, but simultaneous data 

transfer over different paths as in CMT-SCTP was not available. Hence, CMT-SCTP adds 

concurrent transfer over each available path. MPTCP implements the multipath extension of 

the most widely used transport layer protocol, TCP. It is designed to be transparent to both 

higher and lower layers, in order to counteract the proliferation of middleboxes in the Internet 

that hinder the deployment of new transport protocols [41]. Motivated by the success of MPTCP 

and the interest in QUIC by both industry and academia [42] [43], MPQUIC is proposed with 

lots of similarities to MPTCP.  

 

Despite different transport protocol designs and implementations, all the above mentioned 

multipath  transport protocols share four common functionalities: 

• The multipath path management, which is in charge of initiating, tearing down, and 

managing the connections. 

• The multipath scheduling, which is in charge of distributing packets over different paths 

following a certain policy. 

• The multipath congestion control, which aims to detect network congestion, adjust the 

sender rate accordingly, and deal with other aspects of the multipath transmission, e.g., 

fairness towards single path traffic. 

• The reliable transfer, which is in charge of loss detection and loss recovery. 

 

Path Management 

The path manager component determines what path to use for connection establishment and 

when and how additional subflows are established, and it can also control the advertisement or 

acceptance of available IP addresses for new subflows. This logic generally depends on the 

application requirements, e.g., some applications use multipath solely for handover while others 

use it for load sharing. In general, however, the combination of how and when subflows are 
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established with how the subflows are used during the connection, e.g., how packets are 

distributed over them, is performed in conjunction with the multipath scheduler. For instance, 

the path management algorithm can establish a subflow over each of two paths, and the 

scheduler, e.g., by means of measuring the RTT of the subflows, can prefer the subflow with 

the lowest RTT. This operation mode describes very closely the default path management and 

scheduling operations in MPTCP. 

 

We provide an example to better understand how a path manager operates in MPTCP. Let us 

assume we have two hosts, i.e., Host A and B. Host A signals to Host B the support for MPTCP 

via a MP_CAPABLE TCP option during the initial handshake. Once the initial subflow is 

established, the MP_JOIN option is sent to associate a new subflow to the existing MPTCP 

connection. If Host A gets a new IP address during the connection, MP_ADD is signalled by 

MPTCP, telling Host B about the new address, where a new subflow can be established. For 

example, if Host A and Host B have initially two IP addresses each, and all possible subflows 

are established, the multipath connection results in a full-mesh of subflows, i.e., A1-B1, A1-

B2, A2-B1, A2-B2. If Host A gets a new address, denoted A3, during the connection, it can 

signal this address to Host B, and additional subflows can be added to the multipath connection, 

i.e., A3-B1 and A3-B2. 

 

As soon as several paths are active, a multipath sender needs to select over which path each 

packet will be transmitted. This selection is performed by the packet scheduler. 

 

Scheduling 

The multipath scheduler component is primarily in charge of distributing data from the 

application over available paths according to the given policy. Within the multipath transport 

protocol, the multipath scheduler works on a higher level than multipath congestion control. 

When the path is congested, even if the scheduler decides to send the data on that path, the data 

will be temporarily blocked until the Congestion Window (CWND) opens up the space. 

Therefore, the design of a multipath scheduler often incorporates the CWND. 

 

The paths can be classified as homogeneous or heterogeneous, depending on how similar they 

are in terms of bandwidth, delay, loss rates, and other characteristics [44]. To illustrate the 

challenges involved in scheduling, let us consider a basic Round-Robin (RR) scheduler. In 

MPTCP, RR cyclically sends packets over each path, as long as there is space in  CWND. While 
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this is a very straightforward approach that may work reasonably for homogeneous paths, RR 

is not very useful in practice as it does not account for path heterogeneity. Since RR does not 

utilize any characteristics of the paths in the scheduling decision, the packets may arrive out-

of-order, decreasing overall performance [45] [46]. More specifically, on one hand, the receive 

buffer can be flooded by out-of-order packets and the data sender can be throttled, which causes 

the overall throughput of the connection to be reduced or even become zero at times. This 

phenomenon is called receive buffer blocking. On the other hand, even though the size of the 

receiver buffer is not the bottleneck, the phenomenon that the application layer cannot extract 

the data from the receiver buffer on time due to the prior packets not having arrived yet is called 

head-of-line blocking.  

 

There are different ways to tackle multipath scheduling performance challenges. For example, 

the scheduler can use transport layer information, e.g., RTT and CWND, to estimate the transfer 

time of each packet on each path. Based on the estimation, the scheduler tries to distribute 

packets so that they arrive in order [47] [48] [49]. Alternatively, the scheduler can duplicate 

packets to provide low latency or high reliability. The need depends on the current path status 

and the optimization goal (throughput or latency). However, the estimation accuracy of all these 

scheduling approaches is significantly challenged by the dynamicity presented in the networks. 

We elaborate further this issue and the possible solutions in Section 5.  

 

Congestion Control 

Traditional TCP congestion control algorithms operate on packet-level characteristics such as 

loss and delay to detect network congestion and react accordingly, e.g., by adjusting the sending 

rate. Among other requirements, there is a fairness notion that guarantees the same resources 

for each TCP flow, e.g., the same bandwidth at the shared bottleneck [50]. 

 

However, the emergence of multipath transport protocols brought the need to revisit the fairness 

aspect. In the case of CMT-SCTP, the protocol treats all paths belonging to a multipath 

connection separately, applying single-path congestion control over each path independently. 

In MPTCP, the fairness aspect is part of its three design goals, as discussed in [50] [51] [52] 

and reported as following.  

• Improve Throughput: A multipath flow should perform at least as well as a single path 

flow would on the best available path;  
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• Do Not Harm: On each path, a multipath flow should not take more resources than other 

single path flows; 

• Balance Congestion: A multipath flow should move as much traffic as possible off its 

most congested paths, subject to meeting the first two goals. 

When it comes to MPQUIC, it is still unclear which direction standardisation will take. Initial 

research-oriented proposals [38] [53] suggest a design similar to MPTCP.  

 

More generally, multipath congestion control is categorised into uncoupled and coupled 

approaches. The uncoupled proposals treat each of the subflows of a single multipath 

connection as individual connections, i.e., their CWND is increased or reduced without 

considering other subflows. However, for the sake of standardisation [51], the coupled 

proposals were adopted, since it treats all subflows belonging to the multipath connection as a 

single connection, subject to the concept of fairness. In MPTCP, the increase of all CWNDs of 

the subflows from the same multipath connection should not exceed that of a single TCP 

connection, thus not unfairly interacting with single path traffic. The CWND decrease, however, 

is handled individually, since if one of the paths is more congested than others, the subflow of 

the multipath connection should back-off as single-path traffic would do. 

 

Reliable Transfer 

The reliable transport layer protocols normally implement the loss detection and recovery 

mechanisms with the assumptions that the underlying networks may perform suboptimally in 

some cases, e.g., resulting in high delay and loss rates [54]. The same principle also holds in 

the multipath variants of these protocols. To further enhance the reliability, there is interest to 

apply approaches such as Forward Error Correction (FEC) and Network Coding (NC) [55] in 

transport protocols. In FEC, input data is encoded at the sender resulting in a combination of 

source and repair packets, where repair packets are used to recover lost packets at the receiver. 

On the other hand, NC can be performed at the sender and on intermediate nodes (all or a subset 

of them). In the past, different FEC and NC algorithms have been proposed inside the transport 

layer, in particular for TCP, where the implementations were often in conflict with the 

congestion control operation and prohibitively complex [56]. For multipath, FEC and NC 

mechanisms can be applied in the subflow level [57] [58], i.e., in the single path transport 

protocol connection (subflow) to alleviate the heterogeneity of the underlying paths, especially 

when these have different loss rates. Packets that are lost in one of the subflows can be recovered 

on the subflow level without retransmission. Further, since less redundancy information is 
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required, incorporating the FEC and NC with the multipath scheduling is normally of higher 

efficiency than the possible packet duplication mechanism within the multipath scheduling to 

guarantee the reliable transfer. 

3 Main Challenges 
The central objective of this thesis is to design a high-performing adaptive multipath scheduler 

for 5G networks that can support the 5G services and use cases, as presented in Section 1. To 

meet this research objective, in this section, three underlying research questions of this thesis 

are outlined. 

 

• Question 1: What is the status of existing multipath schedulers within the context of 5G 

networks? 

 

We ask this question to motivate the necessity to design an adaptative multipath 

scheduler. This question is discussed in Paper I. To have a better understanding of this 

question, we review the state of the art in the whole area of multipath transport protocols 

and map it into the context of 5G.  

 

• Question 2: How to design an adaptative multipath scheduler? 

 

We ask this question to set up the foundation and discover the potential obstacles before 

designing an adaptative multipath scheduler with advanced metrics. This question is 

discussed in Papers II and III. We utilize the learning perspective to design the 

adaptative multipath scheduler in Paper II where we design a functional learning-based 

multipath scheduler that can adapt within the heterogeneous scenario. In Paper III, we 

further extend the applicable scenario to generic dynamic networks. We validate the 

schedulers under various parameter-driven and trace-driven emulated experiments as 

well as real-world experiments, considering different types of applications.  

 

• Question 3: How to design and validate an adaptative multipath scheduler that can 

adapt well and fast simultaneously? 
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Based on Questions 1 and 2, we ask this question to meet the central objective of this 

thesis. This question is partially touched in Paper III and ultimately resolved in Paper 

IV. Paper IV acknowledges the tradeoff between the adaptation speed and adaptation 

accuracy and further proposes a solution to alleviate the tradeoff to enhance the 

adaptation speed and accuracy simultaneously. We validate the scheduler under various 

parameter-driven and trace-driven emulated experiments and real-world experiments, 

considering different types of applications. 

4 Research Methodology 
In this thesis, we aim to solve the above-mentioned research questions from the learning 

perspective. The research methods conducted in this thesis include literature review, theoretical 

analysis, ideas development, quantitative experiments, and data analysis, presented in 

sequential order. Among these, literature review sets up the knowledge foundation of our work 

and consolidates the proposed research problems; theoretical analysis abstracts the research 

problem within the corresponding theory framework, easing the understanding of the research 

problem in a mathematic manner; on the basis of the previous steps, ideas development develops 

the initial hint to the complete solution for the given research problem; quantitative experiments 

validate the proposed solutions in a quantitative manner; and the data analysis in return aids us 

why the proposed solutions work and not work in the given settings, paving the way for future 

improvements of the proposed solutions. 

 

The detail of each method is described in [59]. Below, we describe how we applied these 

research methodologies to address the research questions. 

 

Question 1: What is the status of existing multipath schedulers within the context of modern 

dynamic networks? 

 

To answer this question, we review the multipath transport works in the context of modern 

dynamic networks (literature review) and suggest the employment of multipath transport 

protocols with potential benefits on eMBB and URLLC slices subjecting to the corresponding 

standardization (theoretical analysis), as shown in Paper I. We conclude the lack of adaptative 

multipath scheduler within such a context.  
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Question 2: How to design an adaptative multipath scheduler? 

 

To answer this question, we start with an initial step to investigate if we can apply the learning 

aspect within multipath scheduling where we validate the proposed algorithm over a 

combination of LTE and WLAN in Paper II. In order to guarantee the fast adaptation time and 

the consideration of the affordability of the real time characteristics, we adopt the light-weight 

learning rather than the complex deep learning approach. We formulate the multipath 

scheduling problem and propose a lightweight and deployable online learning solution to this 

problem (theoretical analysis, ideas development). More specifically, given a dynamicity level, 

a deterministic strategy is derived by using a RL algorithm applied in contextual Multi-Armed 

Bandit (MAB) scenarios. We further formulate a stochastic adjustment strategy and propose a 

lightweight derivation and selection of such an adjustment strategy, analyzing its impact on the 

overall scheduling policy, as a function of the dynamicity levels experienced on the paths 

(theoretical analysis, ideas development). We combine the online learning solution with the 

stochastic adjustment strategy in the final design of Peekaboo. We demonstrate and analyze the 

enhanced performance of Peekaboo over the other non-learning based multipath schedulers in 

both emulations and real-world examinations considering the applications of bulk transfer at 

different sizes and real-time streaming at different bit rates (quantitative experiments and data 

analysis). 

 

Then, we extend the applicable scenario of Peekaboo from dynamic heterogeneous networks to 

generic dynamic networks in Paper III. To this end, we propose M-Peekaboo. M-Peekaboo 

extends Peekaboo's learning scheme for path selection toward 5G scenarios that may include 

paths operating on different frequencies, e.g., mid-band and mmWave by generalizing the 

action set in Peekaboo to select between all paths, without making any assumptions about the 

lowest RTT path (ideas development). We demonstrate and analyze the superiority of M-

Peekaboo over Peekaboo and the other non-learning based multipath schedulers from the 5G-

trace-driven emulations across both static and mobile scenarios, interfacing the applications of 

bulk transfer at different sizes (quantitative experiments and data analysis). 

 

Question 3: How to design an adaptative multipath scheduler that can adapt well and fast 

simultaneously? 
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To answer this question, we further improve the learning time and the adaptation accuracy of 

our learning based multipath scheduler in Paper IV. More specifically, we utilize the 

combination of online and offline learning, where the online learning performs the fine tuning 

and the offline learning performs the setup of the templates used for fine tuning. We use meta-

learning as the glue to complete the combination of these two approaches and eventually 

propose FALCON (theoretical analysis, ideas development). We demonstrate and analyze the 

superiority of FALCON over the other learning and non-learning based multipath schedulers 

from the 5G-trace-driven emulations across both static and mobile scenarios and real-world 

examinations, considering the applications of bulk transfer and web download at different sizes 

(quantitative experiments and data analysis). 

 

For all the papers where we perform experiments, i.e., Paper II, III and IV, we perform the 

evaluations under the MPQUIC framework, although the scheduling approach theoretically is 

not restricted to MPQUIC but designed in a generic fashion. For all the papers, we have 

provided open source software so that the community can replicate our results and further 

develop the algorithms we have proposed. 

 

5 Related Work and Research Contributions 
In this section, we summarize the related work of the thesis from different perspectives 

including the employment of multipath transport in 5G as presented in Section 5.1, scheduling 

based on fixed rules as presented in Section 5.2, and scheduling based on learning as presented 

in Section 5.3. For each perspective, we correspondingly present the research contributions of 

this thesis.  

5.1 Employing Multipath Transport in 5G 

There are previous works that survey and summarize the advantages and disadvantages of 

multipath transport. In [60], a review of load distributing models for multipath networks is 

provided, with focus on the description of the models rather than the layers where such models 

can be adopted. The work in [61] provides a review of multipath solutions that specifically 

solve the reordering problem in heterogeneous wireless networks. Both [62] and [63] survey 

multipath solutions across different layers. Targeting network-layer multipath solutions, the 

work in [64] focuses on literature addressing control-plane problems (how to compute and 
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select routes) and data plane problems (how to split flows on the computed paths). A specific 

aspect of multipath transport protocols, i.e., multipath congestion control, is surveyed in [65]. 

Nevertheless, none of the aforementioned surveys discuss the application of multipath solutions 

in 5G, along with the requirements and benefits of doing so. The work in [66] surveys the 

multipath literature for solutions that can potentially enable URLLC across different layers, 

including those from 3GPP up to Release 15. 

 

Contributions: The Paper I is the first work to the best of our knowledge that places different 

multipath transport’s works in the context of 5G. Specifically, we map the multipath transport’s 

work to the ATSSS architecture’s different steering functional modes, easing their uses in 5G. 

Different from [66], our work is based on 3GPP Release 16 and consider and suggest multipath 

transport as the solutions for both eMBB and URLLC. 

5.2 Scheduling based on Fixed Rules 

Traditional multipath schedulers follow predefined rules that do not change over time. For 

example, the RR scheduler cyclically sends packets over each path, as long as there is space in 

the CWND of the paths. RR may perform reasonably well when the available paths have similar 

characteristics. However, since it does not consider the characteristics of the individual paths it 

is unable to prevent out-of-order packet arrival at the receiver, which is detrimental to multipath 

transport performance as presented in Section 2.3.  

 

The minimum RTT (minRTT) scheduler, as the default scheduler in both MPTCP and MPQUIC, 

prioritizes the paths with available CWND and lowest RTT when sending the data packets. 

Since minRTT considers path characteristics and exploits faster paths given the underlying 

congestion control, it has been shown to achieve higher throughput than RR [47].  

 

Blocking Estimation (BLEST) [47] and Earliest Completion First (ECF) [48] try to provide 

both high throughput and low latency. Assuming two available paths, when both paths have 

CWND availability, BLEST and ECF behave like minRTT, i.e., they select the path with the 

lowest RTT. When the path with the lowest RTT has no CWND availability, BLEST and ECF 

use different mechanisms to decide whether it is less time-consuming to send packets on the 

path with the highest RTT or wait for the path with the lowest RTT to become available again, 
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where BLEST calculates the time overhead buffered in send window and ECF calculates the 

time overhead buffered in send buffer.  

 

Out-of-order Transfer for In-order Arrival (OTIAS) [67] is, in many aspects, similar to BLEST 

and ECF except that OTIAS directly prioritizes the path with the shortest transfer time 

regardless of whether the path is congested or not. Therefore, the transfer time also includes the 

time of waiting for the space in the CWND besides the transmission delay. Furthermore, Quality 

Aware (QAware) [68] is a cross-layer approach incorporating the local queue buffer occupancy 

information of the Network Interface Card (NIC), aiming at improving the estimation of 

transmission delay. 

 

Assigning a group of packets to balance the capacity of different paths, Forward Prediction 

Scheduling (FPS) [69] predicts the packets’ arrival time and sends packets in a manner that they 

are expected to be received in batch. Delay Aware Packet Scheduling (DAPS) [70] directly 

assigns the number of packets over each path based on the ratio of RTT between the paths. [71] 

argues that although pre-allocating packets over different paths seem to ensure in-order arrival, 

there often exists a mismatch between the estimated and the real transfer time, especially in 

wireless networks. To compensate for the inaccurate estimation, a gap composed of several 

packets that are not yet scheduled is left between the packets sent over different paths and is 

self-adjusted based on ACKs which can reflect the out-of-order arrival degree. 

 

Addressing specific use cases and applications, the works in [72], [73], [74], [75] apply packet 

duplication mechanisms to guarantee robustness, which proves to be effective when extra data 

usage and battery consumption are not limiting factors. [72] duplicates all the packets, 

sacrificing the throughput for higher robustness. [73] and [74] adopts the adaptative duplication 

mechanisms which only duplicate packets when networks are of poor conditions (e.g., of high 

losses and/or of high variable delays) for the higher expected throughput. Similarly aiming for 

higher throughput by adaptative duplication, [75] proposes a loss-aware scheduler but solely 

for networks with more than 20% loss rates. 

 

[49] proposes the Short Transfer Time First (STTF) scheduler which also prioritizes the paths 

offering shorter transfer time, specifically considering TCP specific aspects such as the TCP 

Small Queues (TSQ). [76] proposes a multipath scheduler for MPTCP that targets IEEE 802.11 

ad/ac WLANs, which continually searches for the optimal ratio of packets sent over the paths. 
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MP-DASH [77] proposes a scheduling framework for video streaming that is aware of network 

interface preferences from users, e.g., prioritizing WiFi over cellular links. The scheduling 

decision is deducted by solving an integer programming problem to minimize the usage of the 

unwanted path while trying to meet users’ Quality of Experience (QoE) requirements. 

 

The work [78] adopts the purchased price of the path as the prior information. It is assumed 

that, under a guaranteed throughput, the users prefer to use the path having lower costs. Then, 

by applying Lyapunov optimization, the work aims at maximizing the throughput while 

minimizing the price cost for users. Also adopting the path cost to derive the priority, [79] 

proposes a cost-based scheduling algorithm, which simultaneously reduces the cost of multipath 

use for network operators and retains the QoE levels required by the end-users in case of bursty 

video-on-demand traffic. 

 

Contributions:  Schedulers based on predefined rules can adapt fast but not accurately to time-

varying network conditions. This is due to the inherent limitation caused by predefining the rule 

to follow for scheduling packets over the available paths. Indeed, the rule is usually rather 

simple and coarse-grained (e.g., select the path with minimum average RTT), thus failing to 

adapt accurately to the complex dynamics of the network conditions. To solve this problem, 

Paper II proposes a learning based multipath scheduling approach for heterogeneous networks 

and Paper III further extends the applicable scenarios to generic networks. The results shown 

in Papers II and III demonstrate the superiority of applying learning based scheduling 

approaches over the fixed rules ones. Paper IV further improves the performance over the 

schedulers proposed in Paper II and III, as well as the ones presented as fixed rules.  

5.3 Scheduling based on Learning 

During the writing of this thesis, we could not find many works that targets at designing 

learning-based multipath scheduling. To ensure the theoretical completeness of our work, we 

expand our related work to other networking systems that exploit learning concept in their 

design.  

 
Scheduling based on Online Learning 
 
This paradigm assumes that to derive a model and/or policy, an ML algorithm uses data that is 

collected while the model/policy is being derived and used. In the following, we refer to run-
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time collected data as online data. Differently from the offline learning paradigm, the learning 

outcome is thus modified and adapted at run-time, exploiting newly encountered environment 

characteristics, i.e., new online data. This is commonly performed via two main approaches, 

i.e., with or without the use of an abandoning mechanism.  

 

In the first approach, the model/policy is abandoned when either a significant change in the 

environment characteristics is detected via so-called change point detection (i.e., detect if the 

current ongoing context is the same with the training context), e.g., as used for mobile network 

diagnostics [80], or a predefined timer expires, e.g., as used for congestion control where the 

gradient-based approach is employed to search for the optimal sending rate at each timer period 

[81] [82] and as used for the optimization of Quality of Experience (QoE) where the Discounted 

Upper-Confidence Bound (UCB) [83] is employed to make the past experience expired [84]. 

Indeed, if some environment characteristics reappear after being forgotten, the paradigm needs 

to derive again the model/policy that better suits such characteristics.  

 

In the second approach, the online learning algorithm does not apply the abandoning 

mechanism, i.e., the model/policy is continuously updated since the algorithm is continuously 

fed with online data, as shown in [85] for congestion control. Hence, in this case, there is no 

abrupt model/policy abandoning, which may cause a slower reaction to sudden changes in the 

environment characteristics. Examples of multipath schedulers that use online learning with no 

abandoning mechanisms are [86], [87]. Across [85] [86] [87], the similarity is to utilize different 

variants of Q-learning within Reinforcement learning [88] to derive either the congestion 

control policy or the scheduling policy, where the objective is to select the best action (e.g., the 

sending rate in congestion control and the path to transmit the packet in multipath scheduling) 

given current state information (e.g., bandwidth, delay, and loss conditions) for a high 

cumulative reward (e.g., high throughput or low transfer time), suppose the scenario is subject 

to the modeling of Markov Decision Process (MDP).  

 

With the abandoning mechanism (the first approach), old models/policies that trained to be 

optimal for specific environment characteristics may thus be discarded and accordingly adapt 

for the current environment characteristics; without the abandoning mechanism (the second 

approach), the continuous feed of online data may result in the slow adaptation for the current 

environment characteristics while also cannot efficiently keep the memory of the previous 

models (aka. the well-known catastrophic forgetting problem [89]). As a partial remedy for the 
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second approach, [90] tries to apply lifelong learning to alleviate the catastrophic forgetting 

problem. 

 

Contributions: Schedulers based on online learning can ensure the derivation of an accurate 

scheduling policy. In general, however, the need for learning the network conditions online 

makes the adaptation slower compared to schedulers based on predefined rules. If the adaptation 

time is too long, the multipath scheduler might follow a policy that is not functional at all. In 

order to speed up adaptation, schedulers based on online learning can sacrifice accuracy, thus 

exploiting a limited amount of data and a simple learning architecture for deriving a policy. In 

Papers II and III, we explore this trajectory and design the multipath scheduler that are 

functional and provide superior performance over the state-of-the-arts. In addition, Papers II 

and III both include the change point detection into its design for the obvious advantages as 

mentioned above. Further, as proposed in Paper IV, we utilize the offline learning to bootstrap 

the online learning thus can achieving fast adaptation speed and ensure the complexity of the 

mode without trading off the complexity of the model. 

 

Scheduling based on Offline Learning 
 
This paradigm assumes that, in order to derive a model of and/or a policy for a generic 

environment, an ML algorithm uses environment characteristics, i.e., data, collected well-ahead, 

before the derived model is meant to be used. In the following, we refer to pre-collected data as 

offline data. The learning outcome, e.g., the policy to be used by a network protocol, is not 

modified once derived on offline data. In other words, there is no retraining. Therefore, the 

assumption is that offline data includes a complete enough set of environment characteristics 

that could be experienced when the model/policy is actually used.  

 

To the best of our knowledge, there is no existing multipath scheduling approach based on 

offline learning and we analyze the feasibilities in the later part of this subsection. Within the 

other context of the networking field, offline learning is used to derive offline data-based 

policies for congestion control [91], Adaptive Bit Rate (ABR) streaming [92] [93], resource 

management of the data center [94], and resource management of the mobile device [95].  

 

In [91], simulated environments comprised of different settings are set up to mimic different 

scenarios that the congestion controller faces in the real world. The optimal parameter of 
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controller policy (i.e., how to update the congestion window and regulate the lower bound of 

time between two successive sends) is searched to maximize the objective function that 

prioritizes throughput and delay for each setting in the simulated environment and eventually 

obtains a set of control rules. In [92] [93], the simulated video streaming environment is set up 

over the collected network traces. Traversing over the simulated environment, [92] and [93] use 

different reinforcement learning algorithms (i.e., Deep Q-Network (DQN) [96] and 

Asynchronous Advantage Actor Critic (A3C) [97], respectively) to train the policy. Using 

similar learning methodologies, [94] uses the DQN to train the workload scheduling approach 

for the data center cluster over the simulated environment set up over the workload trace. [95] 

treats the task of scheduling webpage rendering on heterogeneous cores as a classification 

problem. Given the webpage and hardware information as the feature, the optimal core to use 

is the class that the feature represents. [95] utilizes Support Vector Machine (SVM) [98] to train 

over the collected workload trace to obtain the scheduling algorithm.  

 

Contributions: Schedulers based on offline learning may intuitively seem like a reasonable 

approach for achieving both fast and accurate adaptation. An offline learning-based scheduler 

may adapt fast because it is pre-trained. Moreover, such a scheduler might achieve accurate 

adaptation if trained on all the possibly encountered network conditions. However, this 

assumption is rather unrealistic for two main reasons: (1) Collecting all possible network 

conditions (past and future) is nearly impossible; (2) Even if all combinations of network 

conditions could be found, it is difficult to accurately label each of them mathematically. Hence, 

several combinations of network conditions may be involved in the pre-training, and the 

obtained model would still have a coarse-grained match with the fine-grained network 

conditions. We show in Paper IV that the approaches proposed in Paper III also outperforms 

the offline learning based approach across the examined practical scenarios due to the ability to 

adpat online. Further, the approach proposed in Paper IV itself combines the advantages of 

online learning with offline learning as mentioned above. 

6 Summary 
In this section, we conclude our work in Section 6.1 and present the future work based on the 

limitations of our work in Section 6.2.  
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6.1 Conclusions 

This thesis focuses on the design and validation of adaptive learning-based multipath schedulers 

for 5G networks and beyond. The research work is motivated by schedulers based on fixed rules 

having difficulty tackling existing and ever-increasing degrees of dynamicity in these networks. 

The dynamicity presents as the variation of bandwidth, delay, and loss, which can be caused by 

the employment of wireless networks, especially the mmWave frequency channels, and 

congestion in the end-to-end network, etc.   

 

To design an adaptive multipath scheduler for 5G networks and beyond, we first review the 

status of multipath transport as a whole within 5G. Therein, we acknowledge the need to design 

the adaptative multipath scheduler and propose utilizing the learning-based design as a potential 

solution.  

 

Next, we consider a subproblem where the paths are heterogeneous with dynamically changing 

path characteristics. To this end, we propose Peekaboo, an adaptive multipath scheduler that 

leverages an online learning mechanism in combination with a stochastic adjustment strategy 

to adapt to the dynamic characteristics of the paths. Peekaboo is computationally lightweight 

and easily deployable. We implement Peekaboo in MPQUIC and compare its performance with 

state-of-the-art multipath schedulers for a wide range of dynamicity levels, using both emulated 

networks and real network scenarios. Across the examined scenarios and applications, 

Peekaboo consistently offers superior or similar performance to the multipath schedulers based 

on fixed rules. 

 

Then, we extend the applicable scenarios of Peekaboo to generic dynamic networks. To this 

end, we propose M-Peekaboo on the basis of Peekaboo with a change of learning framework in 

terms of the action set. We validate different schedulers over the ATSSS like architecture with 

the combination of links of 4G, 5G, and WLAN across both static and mobile networks. More 

specifically, we employ real-world traces for the validations. M-Peekaboo is shown to 

outperform both the Peekaboo and multipath schedulers based on fixed rules. 

 

Nevertheless, both M-Peekaboo and Peekaboo are online learning based schedulers and they 

are shown to adapt not fast enough in rapidly changing. To overcome this drawback, we propose 

FALCON, a learning-based multipath scheduler that can adapt fast and accurately to changing 
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network conditions by combining the benefits of online and offline learning. Through extensive 

emulations, we show that FALCON is able to consistently outperform all state-of-the-art 

schedulers by adapting to the network conditions in a fast and accurate manner. Our real-world 

experiments confirm that FALCON performs well also under realistic network settings. 

6.2 Limitations and Future work 

We present limitations for this work and correspondingly motivate future directions. 

 

From the learning perspective, we have demonstrated the possibility of applying DQN within 

our final solution, FALCON, but we could also consider applying other deep learning 

approaches to enhance the scheduler's performance. Further, the depth of the neural network is 

usually in a positive correlation with the learning model’s performance, thus impacting the 

scheduler’ s performance. Nevertheless, the increase of the depth also increases the training 

time of the model for fixed hardware, ultimately impacting the scheduler’s adaptation time. 

Depending on the design goal, the relationship among the cost of hardware (including the 

financial aspect and the power aspect), the depth of the neural network, and the adaptation time 

can be exploited. Lastly, the outcome of the learning remains as a black box for us, it would be 

beneficial to interpret and understand the learning outcome to better control its behavior. 

 

From the networking perspective, when looking upwards from the scheduling, in the application 

layer, we tested over several application types including bulk transfer, web download, and real-

time streaming in this work. One of the attractive spots of 5G is that it may interface various 

types of applications, such as tactile internet, VR/AR, whose manner of operation might be 

different from the classical applications. It is therefore particularly interesting to extends our 

work to support these 5G applications. When looking downwards from scheduling, in the 

transport layer, we can think of co-designing the multipath scheduler and multipath congestion 

control. As such, for example, the multipath congestion control’s mechanism is no longer a 

hidden state for the scheduler’s MDP, potentially enhancing its performance.  
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ABSTRACT The fifth generation (5G) cellular network aims at providing very high data rates, ultra
reliable low latency communications, and a vast increase of connection density. As one of the design trends
towards these objectives, 5G exploits multi-connectivity, i.e., the concurrent use of multiple access networks.
The Access Traffic Steering, Switching, and Splitting (ATSSS) architecture has recently been proposed to
enable 5G multi-connectivity, and multipath transport protocols have emerged as a key ATSSS technology
enabler. Within this context, this survey presents a detailed review of multipath transport protocols, identifies
their existing and potential exploitation in ATSSS, and suggests their applicability for enhanced Mobile
Broadband (eMBB) and Ultra Reliable Low Latency Communications (URLLC) services. To this end,
we first review 5G background and current standardization activities around multi-connectivity and the
ATSSS architecture. We then provide an in-depth review of multipath transport protocols, covering four
core functionalities, i.e., path management, scheduling, congestion control, and reliable transfer. Based on
the reviewed literature, we further discuss the integration of multipath transport into ATSSS to achieve eMBB
and URLLC service requirements. Finally, we also point out major open research issues and discuss possible
future directions.

INDEX TERMS Multipath transport protocols, access traffic steering, switching and splitting (ATSSS),
enhanced mobile broadband (eMBB), ultra reliable low latency communication (URLLC).

I. INTRODUCTION
The 5th generation of mobile communications (5G) raises
the expectations towards connecting the whole society and
exploits multiple technologies to be able to accommodate
the requirements of a wide range of services. As defined
by the International Telecommunication Union (ITU), three
major performance aspects are central in 5G: very high
data rates, ultra-reliable and low latency, and massive con-
nectivity. As such, the ITU classifies 5G services into
three main categories: enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-LatencyCommunications (URLLC), and

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Maaz Rehan .

massive Machine Type Communications (mMTC). eMBB
aims tomeet the people’s demand for an increasingly digitally
connected lifestyle and focuses on services that have high
bandwidth requirements such as high definition (HD) video
streaming, and virtual/augmented reality (VR/AR) applica-
tions. URLLC aims to meet digital industry expectations
and focuses on latency-sensitive and high-reliability services
such as assisted and automated driving, remote robotics, and
mission-critical applications. mMTC aims to meet demands
for a fully-connected digital society, focusing on services that
include high connection density requirements such as smart
cities and smart agriculture [1]. Figure 1 illustrates some
examples of envisioned use cases for these three categories,
representing the topological relationship in a triangle.
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FIGURE 1. 5G services and corresponding reference use cases [2].

To fulfill the requirements of these use cases, several
enhancements have been proposed both in radio access
and core networks [10]. Among others, millimeter wave
(mmWave), Massive MIMO, Network Slicing, Software-
defined Networking (SDN), Network Function Virtualiza-
tion (NFV), and Multi-access Edge Computing (MEC),
significantly contribute to shaping the 5G architecture
[11], [12]. Further, the 5G services highlight the need
for multi-connectivity in order to meet the aforementioned
requirements. By exploiting multiple Radio Access Tech-
nologies (RATs) simultaneously [11], multi-connectivity pro-
vides not only Quality of Service (QoS) improvements on the
user side, but also better load balancing across available RATs
on the network side.

Over the years, many schemes and methods for enabling
efficient and reliable multi-connectivity have been proposed,
especially at the radio level. Transport layer approaches have
recently gained significant attention due to the Technical
Specification (TS) 23.501 (Release 16) [13] by 3rd Gener-
ation Partnership Project (3GPP), which specifies how the
5G system can be extended to support Access Traffic Steer-
ing, Switching and Splitting (ATSSS) between 3GPP access
(e.g., LTE and 5G New Radio (NR)) and non-3GPP access
networks (e.g., WiFi). ATSSS leverages multipath transport
protocols to deliver the functionalities by manipulating traffic
at the flow or intra-flow level [13], [14]. By doing so, ATSSS
can conform to eMBB requirements, delivering increased
throughput through concurrent transmissions, and to URLLC
requirements, delivering low latency and high reliability
through path redundancy.

Motivated by the benefits that ATSSS and multipath trans-
port protocols can bring to eMBB and URLLC services, this
paper surveys the state-of-the-art research efforts on multi-
path transport protocols, identifies how they can be leveraged
in ATSSS, and suggests which 5G requirements they help to
meet.

A. RELATED SURVEYS
Putting our work in context, Table 1 lists related surveys on
multipath transmission. In [3], a review of load distributing

models for multipath networks is provided, with focus on the
description of the models rather than the layers where such
models can be adopted. The work in [4] provides a review
of multipath solutions that specifically solve the reordering
problem in heterogeneous wireless networks. Both [5] and [7]
survey multipath solutions across different layers. Targeting
network-layer multipath solutions, the work in [6] focuses on
literature addressing control-plane problems (how to compute
and select routes) and data plane problems (how to split
flows on the computed paths). A specific aspect of multi-
path transport protocols, i.e., multipath congestion control,
is surveyed in [8]. Nevertheless, none of the aforementioned
surveys discuss the application of multipath solutions in 5G,
along with the requirements and benefits of doing so.

The work in [9] surveys the multipath literature for solu-
tions that can potentially enable URLLC across different lay-
ers, including those from 3GPP up to Release 15. Differently
from [9], our work is based on 3GPP Release 16,1 and it
specifically surveys multipath literature focusing on transport
layer solutions, due to their direct applicability in ATSSS.
Secondly, to ease the link between multipath transport and
5G, we present the solutions from the multipath literature and
position them in relation to the ATSSS steering modes, intro-
duced in Section II-E. Thirdly, our work surveys themultipath
literature addressing both eMBB and URLLC services.

B. CONTRIBUTIONS AND OUTLINE OF THIS SURVEY
The main contribution of this survey can be summarised as
follows:

• Weprovide an overview of 5G services and their require-
ments with a link to multi-connectivity approaches
meant to address such requirements;

• We focus onmulti-connectivity solutions at the transport
layer, and thus analyze the main functional blocks of
multipath transport protocols, i.e., path management,
scheduling, congestion control, and reliable transfer;

• We describe the two main options for integrating multi-
path transport protocols in 5G systems, i.e., above-the-
core and core-centric. For the second case, we particu-
larly analyze the ATSSS architecture, as the most recent
multi-connectivity mechanism standardized by 3GPP;

• We provide a comprehensive review of work related to
multipath transport, and discuss how the main compo-
nents of multipath transport protocols map to specific
ATSSS functionalities and modes;

• We identify and discuss open research issues in ATSSS
and multipath transport in 5G.

To present our contributions, we outline the survey as
reported in Figure 2: In Section II we review 5G background

1We base our work in this survey on ATSSS’s Rel-16 [13], [15], which lay
the foundations for multi-connectivity in 5G. Currently, 3GPP’s ATSSS Rel-
17 (Phase 2) [16] is ongoing work and expected to be concluded during 2022.
Several proposals in this phase focus on the impact in the 5G and beyond
architecture as well as extensions of ATSSS. While we briefly mention the
ongoing standardization efforts in Section II-E, we opt to not heavily rely on
them at this stage.
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TABLE 1. Overview of related work and comparison with the present contribution.

FIGURE 2. Survey structure.

and current standardization targeting 5G multi-connectivity.
We then provide a bird’s eye view of multipath transport

protocols and their four core functionalities, i.e., path
management, scheduling, congestion control, and reliable
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transfer in Section III. We present a comprehensive litera-
ture overview on multipath transport protocols and discuss
how they fit in 5G in Section IV. Open research challenges
are summarized in Section V. We conclude our work in
Section VI.

II. 5G SERVICES AND MULTI-CONNECTIVITY
In this section, we present 5G requirements and specifications
for eMBB and URLLC services, as first defined by ITU and
then 3GPP, respectively. We then comment on the challenges
for these services requirements to coexist in the network.
Finally, we introduce multi-connectivity solutions in cellular
systems and focus on the ATSSS architecture, which plays
a key role in enabling 5G multi-connectivity and meeting
eMBB and URLLC requirements. We, in particular, highlight
the application of different multipath transport protocols in
the standardization of ATSSS.

A. 5G REQUIREMENTS BY ITU
In early 2012, the ITU Radiocommunication sector
(ITU-R) started a program to develop ‘‘International Mobile
Telecommunications (IMT) for 2020 and beyond’’, preparing
the stage for 5G research activities to emerge around the
world. In 2015, the overall 5G requirements were settled in
IMT-2020 and issued by ITU-R [2].

Therein, 5G envisages a broad variety of capabilities and
applications, grouped into three main services, i.e., eMBB,
URLLC, and mMTC, as defined in Section I. In these ser-
vices, the enhanced key capabilities are captured by several
parameters such as peak data rate (Gbit/s), latency (ms),
connection density (number of devices per km2), energy effi-
ciency (bit/Joule), and spectrum efficiency (bit/s/Hz). More
concretely, peak data rates are expected to reach 20 Gbit/s,
which is nearly 20 times higher than IMT-Advanced (i.e.,
4G systems). The energy consumption for the radio access
network should be also improved by a factor at least as great
as the envisaged capacity increase. Also, 5G should be able
to provide 1 ms over-the-air latency to support use cases with
very low latency requirements. Finally, 5G is also expected
to support a connection density of up to 106/km2. A more
comprehensive view of the expected enhancement of each
key capability compared with IMT-Advanced is shown in
Figure 3.
Further, Figure 4 shows the comparison of each key

capability for eMBB, URLLC and mMTC. In eMBB, user
experienced data rate, area traffic capacity, peak data rate,
mobility, energy efficiency, and spectrum efficiency all have
high importance. In URLLC, low latency is of the highest pri-
ority in several industrial critical applications. This key capa-
bility would be likewise required in some high mobility use
cases, e.g. transportation safety. In mMTC, high connection
density is needed to support a large number of devices, e.g.,
Internet of Things (IoT), which may intermittently use the
radio access network to transmit small to large data amounts
under low mobility.

FIGURE 3. Enhancement of key capabilities from IMT-Advanced to
IMT-2020.

FIGURE 4. Key capability comparison among 5G services.

B. 5G SPECIFICATIONS BY 3GPP
While ITU-R sets up the general requirements of 5G, 3GPP
makes the formal specifications based on those. In particular,
adopting a concept referred to as network slicing, the 5G ser-
vices proposed by ITU-R are formally mapped into a Public
Land Mobile Network (PLMN) with different Slice Service
Type (SST) numbers [13]. Hence, different SSTs operate
within the network slicing architecture, which enables the
multiplexing of virtualized and SST-dedicated logical net-
works on the same physical network infrastructure [17].
eMBB: 3GPP Technical Report (TR) 26.891 [18] defines

eMBB as SST 1, which is suitable for handling 5G eMBB,
however, not limited to consumer mobile broadband appli-
cations. As shown in [19], it is expected that SST 1 supports
high data rates and high traffic density scenarios such as urban
and rural wide-area (macro), indoor hotspots, dense urban,
very dense crowded scenarios, high-speed trains, vehicles,
and airplane connectivity.
URLLC: 3GPP TR 26.891 [18] also defines URLLC as

SST 2 for use cases requiring very low latency and very
high service availability, i.e. a reliability between 99.9% and
99.999%. As shown in [19], it is expected that the use cases
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and their respective performance requirements are derived
from different industry segments and processes, e.g., indus-
try manufacturing (industry automation), intelligent transport
systems (connected cars), or electricity distribution (public
critical infrastructure).
mMTC: 3GPP TR 26.891 [18] also defines mMTC as

SST 3, with typical use cases being urban coverage with
large cells and continuous coverage providing very high con-
nection density of mMTC devices (massive IoT). As shown
in [20], besides high connection density, mMTC also needs
to maintain low power consumption to extend battery life up
to 10 years.
5G Services’ Coexistence: eMBB, URLLC and mMTC

can also coexist as part of the same 5G network through
several mechanisms, where one might be often referred to
a broader term, namely, slicing. One of the most challeng-
ing places in the network where coexistence must be effi-
ciently implemented is the Radio Access Network (RAN).
Indeed, in the RAN, scheduling decisions are taken in order
to optimally multiplex traffic from different services. For
example, it is likely that RAN scheduling decisions prioritize
URLLC over eMBB traffic, since URLLC cannot be queued
until the next slot to wait for eMBB traffic, due to its strict
latency requirements. In this direction, there are three main
approaches proposed by 3GPP [21], namely, Puncturing,
Superposition, and Orthogonal scheduler. If URLLC traffic
arrives during an ongoing eMBB transmission, it can be
immediately scheduled on top of eMBB, i.e., each eMBB
slot is divided into mini-slots that are meant for multi-
plexing eMBB and URLLC traffic. Then, the gNodeB may
either allocate transmission resources to both eMBB and
URLLC (superposition) or temporarily interrupt eMBB traf-
fic (puncturing) [22]. While beneficial for URLLC require-
ments, these methods may negatively impact the reliability
of eMBB traffic. Orthogonal scheduling, on the other hand,
reserves in advance (semi-static or dynamic) a number of fre-
quency channels for URLLC. In the semi-static scheme, the
gNodeB broadcasts the frame structure configuration, e.g.,
the current frequency numerology. In the dynamic scheme,
the frame structure is frequently updated using the control
channel of scheduled users, thus, incurring in higher control-
plane overhead. The main drawback of this approach is to
assume that URLLC traffic is always present and to reserve
resources for it. Several research works also try to address
such coexistence challenges. In [23], the authors propose a
risk-sensitive measure to allocate resources to URLLC traffic
while minimizing the risk for the eMBB traffic of achieving
low rates. Hence, they propose a problem formulation that
protects eMBB from drastic rate reduction while ensuring
URLLC reliability. Similarly, [24] formulates an optimiza-
tion problem to maximize the eMBB Minimum Expected
Achieved Rate (MEAR) while provisioning URLLC, thus,
focused on eMBB puncturing.
In all aforementioned 5G services, key enhancing capabil-

ities related to throughput, latency or reliability may partially
depend on the 5G system, e.g., radio frequency bands to

achieve higher throughput, the radio protocol stack itself
e.g. guaranteeing that all services can coexist. Other aspects
however may be tackled by improving the interconnection
and intersection between the 5G system and other infrastruc-
ture services, e.g., allowing service hosting (caching) on the
5G system from services outside the Internet (mobile edge
computing and communication), or allowing 5G systems to
leverage existing distributed cloud infrastructures for their
own operation. From a different angle, how UEs connect
and use the 5G system can be further leveraged. Therefore,
in this paper we focus on this latter aspect, pointing to how the
proven benefits of multi-connectivity and, more specifically,
of multipath transport [25]–[27], can aid 5G services to reach
their key performance indicators. In more detail, we focus on
aspects such as high throughput in eMBB, and low latency
and high reliability in URLLC.

C. MULTI-CONNECTIVITY IN CELLULAR NETWORKS
Multi-connectivity is one of the paradigms in 5G that aims
to satisfy the service requirements defined in Section II-A.
We provide in this section a brief overview on existing
multi-connectivity solutions for cellular networks, along with
related standardization activities.

One of the first multi-connectivity solutions was intro-
duced in 3GPP Rel-8 (2008) and referred to as Access
Network Discovery and Selection Function (ANDSF) [28].
In particular, ANDSF targets interoperability between 3GPP
and non-3GPP systems. Focusing on the cellular access,
Coordinated Multi-Point (CoMP) was introduced in Rel-11
(2012). In this case, multiple base stations can trans-
mit (receive) in parallel the same data towards a UE, in order
to improve the communication quality in poor coverage areas.
While CoMP lies across physical and MAC layers, Dual
Connectivity (DC) is performed in the above Packet Data
Convergence Protocol (PDCP) layer. Standardized in Rel-12
(2015), DC allows a UE to exploit two not co-located LTE
access nodes, e.g., two evolved Node Bs (eNBs). The Master
eNB terminates the control plane in the LTE core and coor-
dinates with the Secondary eNB to provide additional radio
resources to the UE.

Similar solutions are then introduced for non-3GPP access
in Rel-13 (2016) and extended in Rel-14 (2017). They
are referred to as LTE-WLAN Aggregation (LWA) and
LTE-WLAN radio-level integration with IP security tunnel
(LWIP). In both cases, the WiFi access point has a similar
scope compared to a Secondary eNB in DC, and can be
co-located or not with the primary access node. The user
device reports WiFi-related measurements to the cellular net-
work, which decides to activate or not the multi-connectivity
option. The WiFi traffic is managed within the LTE system
via specific adaptation protocols [29]. Mechanisms similar
to LWA and LWIP can be envisioned for 5G [30]. However,
initial proposals in Rel-15 (2018) were focused on cellular
access, and have led to extending DC to support parallel use
of LTE and 5G NR.
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FIGURE 5. High-level view of above-the-core and core-centric integration options in 5G. For the second option, the main 5G functional blocks
involved in ATSSS architecture are reported.

In the next section, we focus on two main approaches
that aim at integrating multipath transport solutions to enable
multi-connectivity in 5G systems. After introducing twomain
options, we detail the ATSSS architecture, which is one of
the main multi-connectivity frameworks for 5G. Proposed
in Rel-16, ATSSS proposes a direct integration and use of
multipath transport protocols in 5G systems.

D. TRANSPORT LAYER MULTI-CONNECTIVITY IN 5G
Currently, two main approaches are highlighted to tackle 5G
multi-connectivity via multipath transport solutions: Above-
the-Core and Core-Centric. In the Above-the-Core integra-
tion, the multipath transport protocol is deployed at the client
and the server sides, and the aggregation of different paths
occurs in between, without impacting the network. In the
Core-Centric integration, the multipath transport protocol is
deployed at the client and in the 5G Core (i.e., through a
multipath proxy), and single path transport is run between
the core network and the server. A high-level view of both
approaches is shown in Figure 5, with yellow and green
dashed lines representing Above-the-Core and Core-Centric,
respectively.

The Above-the-Core integration has been prevalent in
academia and industry, with several contributions. For exam-
ple, several early efforts show the benefits of multipath trans-
port protocols in smartphones [31]–[35], which could be seen
as predecessors of the ongoing standardization activities in
5G multi-connectivity. The goal of the first measurement
studies was to evaluate whether the proven benefits of multi-
path transport in data center networks could be also leveraged

by multi-homed devices, e.g., smartphones, and by network
operators, e.g., to offload cellular network traffic to WLAN.
The majority of these contributions use Multipath Transmis-
sion Control Protocol (MPTCP) as the base transport proto-
col, with exception of [36], that presents both MPTCP and
Multipath QUIC (MPQUIC). Few others focus on developing
tools to tune application and transport protocol interaction to
improve performance and battery life [37], [38]. It is con-
sistently demonstrated that multipath transport can mitigate
the impact of handover in applications under mobility, e.g.,
when moving between WLAN and cellular coverage. Since
early experiments in 2013, this aspect has been particularly
supported by iPhone devices [39], and also more recently in
2020 by Alibaba and Apple and [40].

The Core-Centric integration, as highlighted by several
use cases [41], [42], is a stronger candidate to be adopted
in 5G systems, since it enables a more direct control of
multi-connectivity within the cellular system.

3GPP has specified the ATSSS architecture in TS 23.501
Rel-16, as an instantiation of the Core-Centric approach.
The key concept being introduced is the Multi-Access Pro-
tocol Data Unit (MA PDU) session. The MA PDU session
generalizes the single-access PDU session and allows an
application to send/receive traffic over 3GPP access, non-
3GPP access, or both simultaneously. The MA PDU session
is enabled in the ATSSS architecture, which is depicted in
Figure 5; it is established between the User Equipment (UE)
and User Plane Function (UPF), with both 3GPP and non-
3GPP access networks in the middle. Moreover, as shown
in Figure 5, other 5G core network functions are involved in
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the ATSSS operation, i.e., Access and Mobility Management
Function (AMF), Session Management Function (SMF), and
Policy Control function (PCF). Once a MA PDU session
is established, it handles the traffic over different networks
via Steering, Switching, and Splitting functions, defined as
follows:

• Steering: It enables the selection and use of an access
network for a data flow;

• Switching: It allows to redirect all traffic of an ongoing
data flow from one access network to another, while
maintaining service continuity;

• Splitting: It enables the splitting of the traffic of a data
flow across multiple access networks, so that some traf-
fic of the data flow is transferred via one access and
some other traffic of the same data flow is transferred
via another access.

As shown in Figure 5, the PCF controls ATSSS by deliver-
ing the policy rule to the SMF. The policy rule, shared by the
SMF with the UE (uplink) or the UPF (downlink), contains
the indication on which ATSSS steering function and steering
mode to adopt. To simplify the terminology from TS 23.501,
we refer in the following to only steering, when referring to
Steering, Switching, or Splitting.

With the notion of MA PDU introduced by ATSSS, there
are several options for fine grained control of data flows to
be served over one or more access networks. For example,
Steering selects, across several available access networks, the
one that better fulfills a certain mode, e.g., smallest delay,
etc. Switching, on the other hand, takes a hard decision to
abandon one of the access networks and invariably use either
one access network or another, e.g., enabling connection
migration and handover mechanisms. Splitting allows for
using (two or more) access networks simultaneously, trans-
ferring different parts of a data flow on each available access
network. Finally, Splitting allows for selecting a particular
access network to provide, e.g., redundancy, or both access
networks to provide, e.g, aggregation. As further detailed
below,multipath transport protocols plays a key role to realize
such functionality.

E. APPLICATIONS OF MULTIPATH TRANSPORT
PROTOCOLS IN 5G ATSSS
TS 23.501 defines two ways of implementing steering func-
tionalities: a) the use of a multipath transport protocol, above
the IP layer, and b) the use of a so-called ATSSS Lower Layer
(ATSSS-LL), below the IP layer. In the case of multipath
transport, as shown in Figure 5, the UE and UPF communi-
cate through the Multipath Transport Function (in the UE)
and the Multipath Transport Proxy Function (in the UPF).
In the case of ATSSS-LL, the UE and UPF communicate with
each other via the combination of ATSSS-LL Function of the
UE and UPF. In addition, UPF supports Performance Mea-
surement Functionality (PMF), that may be used by the MA
PDU session to obtain access performance measurements
over 3GPP and/or non-3GPP access networks.

While there is no recommendation on the method for
ATSSS-LL yet in Rel-16, TS 23.501 Rel-16 identifies a spe-
cific multipath transport protocol for the multipath transport
functionality, i.e., MPTCP. However, in the studies that lead
up to 3GPP Rel-16 more protocols were analyzed for ATSSS
support in the 5G System architecture. During these studies,
recorded in TR 23.793 [15], the use of QUIC, MPQUIC,
Stream Control Transmission Protocol (SCTP), and multi-
path User Datagram Protocol (UDP) were considered.

In terms of steering modes, TS 23.501 defines four differ-
ent modes that can be used with ATSSS, as follows:

• Active-Standby: The traffic of an MA-PDU session is
sent to one access network only, referred to as ‘‘active’’
access. The other access network is in ‘‘standby’’ and
takes traffic only when the active one is unavailable. The
active access is defined when the MA-PDU session is
established and can remain the same or change during
the session lifetime;

• Priority-based: Some priority weights are assigned to
the available access networks either statically during
the establishment of a MA-PDU session or dynamically
during the lifetime of a MA-PDU session. The traffic is
managed by the higher priority access; however, when it
is congested or unavailable, the traffic is redirected onto
the lower priority access;

• Smallest Delay: The used access network is the one
providing the shortest Round Trip Time (RTT). It con-
ceptually belongs to the Priority-based mode but, in this
case, the higher priority access is determined dynami-
cally in the lifetime of an MA-PDU session, based on
RTT measurements;

• Load-balancing: Each access network receives a per-
centage of the data of the MA-PDU session, depending
on the assigned weight factor. If one access becomes
unavailable, all traffic is sent to the other.

Moreover, two further modes were under discussion in
TR 23.793, and can be foreseen as possible extensions for
future ATSSS specifications:

• Best-Access: It generalizes the Smallest Delay mode,
making it possible to adopt other factors rather than RTT
to decide the access network with the best performance
to use. It also conceptually belongs to the Priority-
based mode, but in this case, the higher priority access
is also determined dynamically during the lifetime of
an MA-PDU session, based on the performance of the
access;

• Redundant: All or some data flows are transmitted on
both accesses in order to increase reliability.

The above steering modes are all supported by MPTCP.
The standardization of 3GPP Rel-17 and ATSSS Phase 2 is

at the time of writing of this article on-going work, expected
to conclude in March 2022. Phase 2 is focused on defining
several improvements of the steering modes, such as different
ways of controlling the load balancing or determining when
a path is congested for the priority-based steering mode.
However, the studies preceding ATSSS Phase 2 [43] again
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considered additional steering functionalities based on both
QUIC and MP-QUIC, as well as adding a QUIC-based
proxy (with and without multipath capability). The latter still
depends on work to be carried out at the IETF.

Further, the ATSSS Phase 2 study item hints to an ATSSS
Phase 3, including features and scenarios that are out-of-
scope in ATSSS Phase 2, e.g., a MA PDU session with more
than two network paths. Discussions on what study items to
include for Rel-18 are ongoing at the time of writing. QUIC
and MP-QUIC are again under discussion and Multipath
DCCP [44] has also been suggested as an option. As Rel-17
is still ongoing work and standardization of Rel-18 has not
yet started, we opt to base the work in this survey on ATSSS
Release 16 [13], [15], which already lay the foundation for
the on-going work in the subsequent ATSSS phases.

The key role of multipath transport protocols in ATSSS
motivates us to investigate multipath transport protocols more
generally in the literature. We report our review and analysis
in Sections III and IV, respectively, wherewe also highlight a)
the connection to the ATSSS architecture and mapping with
ATSSS steering modes considered for ATSSS Phase 1, and b)
how the proposed multipath schemes may help towards sat-
isfying the requirements of 5G eMBB and URLLC services.

III. BACKGROUND ON MULTIPATH TRANSPORT
Multipath transport protocols are designed to improve both
communication throughput and resilience as they are able
to leverage several network paths simultaneously and seam-
lessly support failover. We note that all three transport pro-
tocols considered in this survey, namely, SCTP, TCP and
QUIC, have different multipath features supporting at least
one of the multipath benefits (throughput and/or resilience).
For example, SCTP is already able to leverage multiple paths,
however, it uses one primary path while others are meant for
failover, when the primary path fails. Thus, SCTP is able to
natively improve resilience. Also, QUIC with its connection
migration feature is able tomove a connection across network
accesses, thus, also improving failover. TCP, on the other
hand, does not natively support failover as it ties IP addresses
and ports to identify connections. None of the single-path
implementations are able to improve throughput, which is,
beyond improved resilience, one of the main promised bene-
fits of their multipath counterparts, which we refer to in more
details in the following. The realisation of the multipath con-
nection depends on the protocol implementation specifics.
Figure 6 depicts a high-level representation of the single path
(left-hand side) and the multipath (right-hand side) protocol
stacks. Nowadays, three main multipath protocols exist, i.e.,
ConcurrentMultipath Transfer SCTP (CMT-SCTP),MPTCP,
and MPQUIC, which are the focuses of this survey. In addi-
tion, IETF recently has also initiated work on extending
the Datagram Congestion Control Protocol (DCCP) [45] to
support the multipath operation, aiming to deliver Multipath
DCCP (MP-DCCP) [44].

As an extension of SCTP, CMT-SCTP [25], [46] is one
of the first multipath transport protocols that considered the

FIGURE 6. Single path and multipath transport protocol stack
representations.

simultaneous data transfer over different paths. MPTCP [47]
implements the multipath extension of the most widely used
transport layer protocol, TCP. It is designed to be transpar-
ent to both higher and lower layers, in order to counteract
the proliferation of middleboxes in the Internet that hinder
the deployment of new transport protocols [48]. Recently,
IETF QUIC2 became an attractive alternative to TCP since
it can combine the benefits of HTTP/2, Transport Layer
Security (TLS) and TCP over UDP to reduce latency and
improve security. QUIC encrypts all payload and most of
the protocol headers to prevent interference from middle-
boxes [50]. Motivated by the success of MPTCP and the
interest in QUIC by both industry and academia [51], [52], the
multipath extension for QUIC (MPQUIC) is proposed in [53],
[54], with similarities to MPTCP.

Note that, MPTCP plays a central role in ATSSS while
MPQUIC has been discussed as an alternative. In this paper,
as much as we would like to keep the discussions more gen-
eral on multipath transport protocols, due to its maturity and
adoption in the community we refer more often to MPTCP
literature.

Despite different transport protocol design and implemen-
tations, all above mentioned multipath transport protocols
share four common functionalities, which are of relevance in
ATSSS:

• The multipath path management, which is in charge of
initiating and managing the connections, i.e., subflows,
part of the same multipath connection.

• The multipath scheduling, which is in charge of dis-
tributing packets over different paths following a certain
policy, e.g., aggregated throughput (utilise all available
capacity), reduce latency (prefer low latency paths) or
improve reliability (duplicate packets).

• The multipath congestion control, which aims to detect
network congestion, adjust the sender rate accordingly
(as in the single path case), and deal with other aspects
of a multipath transmission, e.g., fairness towards single
path traffic.

2The Google QUIC protocol (gQUIC) is the original implementation [49]
adopted by the IETF for standardization. However, gQUIC and IETF QUIC
are today two different implementations, where IETF QUIC significantly
diverges from the original gQUIC proposal in terms of the handshake, wire
format of the packets, or adaptation to Hypertext Transfer Protocol (HTTP),
among other major differences.
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• The reliable transfer, which is in charge of loss detection
and loss recovery (as in the single path case) by having
a mechanism at the sender that detects packet losses and
an associate mechanism in charge of recovering these
packets with retransmissions.

Next, we describe these main functionalities. In Section IV,
we will review the state-of-the-art literature for these func-
tionalities and provide a direct mapping of them to the ATSSS
modes.

A. MULTIPATH PATH MANAGEMENT
The path manager component determines what path to use
for connection establishment and when and how additional
subflows are established, and it can also control the adver-
tisement or acceptance of available IP addresses for new
subflows. This logic generally depends on the application
requirements, e.g., some applications use multipath only for
handover while others use it for load sharing. In general, how-
ever, the combination of how and when subflows are estab-
lished with how the subflows are used during the connection,
e.g., how packets are distributed over them, is performed in
conjunction with the multipath scheduler, described in next
section. For instance, the path management algorithm can
establish a subflow over each of two paths, and the sched-
uler, e.g., by means of measuring the RTT of the subflows,
can prefer the subflow with the lowest RTT. This operation
mode describes very closely the default path management
and scheduling operations in MPTCP. To better understand
how a path manager operates in MPTCP, we provide an
example, illustrated in Figure 7: Host A signals to Host B the
support for MPTCP via a MP_CAPABLE TCP option during
the initial handshake. Once the initial subflow is established,
the MP_JOIN option is sent to associate a new subflow to the
existing MPTCP connection. If Host A gets a new IP address
during the connection, MP_ADD is signalled by MPTCP,
telling Host B about the new address, where a new subflow
can be established. For example, if Host A and Host B have
initially two IP addresses each, and all possible subflows are
established, the multipath connection results in a full-mesh
of subflows, i.e., A1-B1, A1-B2, A2-B1, A2-B2. If Host A
gets a new address, denoted A3, during the connection, it can
signal this address to Host B, and additional subflows can be
added to the multipath connection, i.e., A3-B1 and A3-B2.

In MPTCP, there are currently three implementations for
path management:

• Default neither announces IP addresses nor initiates the
creation of new subflows, as it only accepts their passive
creation, e.g., a request from the remote host;

• Fullmesh establishes the full-mesh of subflows accord-
ing to the available IP addresses, similar to the previous
example with Host A and Host B (see Figure 7);

• Ndiffports uses the same pair of IP addresses, where each
subflow has a different source TCP port.

The path management in MPQUIC is specified with a dif-
ferent approach [55], [56]: during the handshake, both hosts

FIGURE 7. Illustration of the fullmesh path management algorithm.

can negotiate the multipath capability via frames, and path
management can be implemented via the PATH_STATUS
frame. With this frame, the hosts can signal preference
or claim the state for a subflow, e.g., set the subflow as
available, standby, mark its priority or simply abandon it.
To validate a path, i.e., probe it, PATH_CHALLENGE and
PATH_RESPONSE frames can be used. As regards SCTP,
during the association startup, a primary path is defined for
each SCTP host and used for sending SCTP packets, where
all other paths are used for failover or used for retransmis-
sions. The IP addresses in a SCTP association are exchanged
and verified during association setup, and each destination
address is a different path towards the corresponding host.
The path reachability is verified with heartbeat chunks sent
periodically to all destinations. Dynamic Address Reconfigu-
ration (DAR) is an SCTP extension for SCTP’s multihoming,
and enables to dynamically add or delete IP addresses, and
to request a primary-path change during an active SCTP
association.

B. MULTIPATH SCHEDULING
The multipath scheduler component is primarily in charge of
distributing data over available paths according to the given
policy. The available paths can be classified as homogeneous
or heterogeneous, depending on how similar they are in terms
of bandwidth, delay, loss rates, and other characteristics [57].
Prior to using the paths, they need to be established at the
beginning or during the multipath connection by the path
manager, see Section III-A.
To illustrate the challenges involved in scheduling, let us

consider a basic Round-Robin (RR) scheduler. In MPTCP,
RR cyclically sends packets over each path, as long as there
is space in their CongestionWindows (CWND). While this is
a very simple approach that may work reasonably for homo-
geneous paths, RR is not very useful in practice as it does
not account for path heterogeneity. Since RR does not use
any characteristics of the paths in the scheduling decision, the
packets may arrive out-of-order, which causes receiver buffer
blocking and head-of-line blocking when data can be only
delivered to the application in-order, thus, decreasing overall
performance [58], [59]. In general, as path heterogeneity
increases, scheduling and making use of multiple paths gets
more challenging.

There are different ways to tackle multipath scheduling
performance challenges. For example, the scheduler can use
transport layer information, e.g., RTT and CWND, to esti-
mate the transfer time of each packet on each path. Based on
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the estimation, the scheduler tries to distribute packets so that
they arrive in order [60]–[62]. Alternatively, the scheduler can
duplicate packets to provide low latency or high reliability.
The need depends on the current path status and the optimiza-
tion goal (throughput or latency). More recently, machine
learning approaches (e.g., reinforcement or supervised learn-
ing, etc.) are used as ways to enable latency and/or throughput
optimization in the same algorithm. Here, machine learning
features can be derived from transport layer information such
as RTT, CWND, inflight packets [63]–[65], etc.

C. MULTIPATH CONGESTION CONTROL
Traditionally designed for single-path TCP scenarios, con-
gestion control algorithms operate on packet-level character-
istics such as loss and delay to detect network congestion
and react accordingly, e.g., by adjusting the sending rate.
Among other requirements, there is a fairness notion that
guarantees the same resources for each TCP flow, e.g., the
same bandwidth at the shared bottleneck [66].

However, the emergence of multipath transport protocols
brought the need to revisit the fairness aspect. In the case
of CMT-SCTP, the protocol treats all paths belonging to a
multipath connection separately, applying single-path con-
gestion control over each path independently. In MPTCP, the
fairness aspect is part of its three design goals, as discussed
in [66]–[68]:

1) Improve Throughput:Amultipath flow should perform
at least as well as a single path flow would on the best
available path;

2) Do Not Harm: On each path, a multipath flow should
not take more resources than other single path flows;

3) Balance Congestion: Amultipath flow should move as
much traffic as possible off its most congested paths,
subject to meeting the first two goals.

Requirement 2) has driven specifically the design of sev-
eral algorithms, and it is mentioned as ‘‘fairness in the
broader, network sense’’ in RFC6356 [69]. When it comes
to MPQUIC, it is still unclear which direction standardiza-
tion will take. Initial research-oriented proposals [27], [70]
suggest a design similar to MPTCP. More generally, mul-
tipath congestion control is categorised into uncoupled and
coupled approaches. The uncoupled proposals treat each of
the subflows of a single multipath connection as individual
connections, i.e., their CWND is increased or reduced with-
out considering other subflows. However, for the sake of stan-
dardization, the coupled proposals were adopted, as described
in RFC6356, since it treats all subflows belonging to the
multipath connection as a single connection. In MPTCP, the
increase of all CWNDs of the subflows from the same multi-
path connection should not exceed that of a single TCP con-
nection, thus not unfairly interacting with single path traffic.
The CWND decrease, however, is handled individually, since
if one of the paths is more congested than others, the subflow
of the multipath connection should back-off as single-path
traffic would do.

D. RELIABLE TRANSFER
Transport layer protocols are mainly distinguished by pro-
viding reliable or unreliable data transfer. For instance, all
data sent over TCP is guaranteed to be delivered, i.e, TCP is
fully-reliable. UDP, on the other hand, does not keep track of
lost or corrupted packets, i.e., it does not provide guaranteed
delivery and it is unreliable.3 SCTP on the other hand also
implements partial reliability, i.e., some level of packet loss
can be tolerated. Multipath variants of these protocols imple-
ment reliability as in their single-path counterparts, how-
ever, with functionalities specifically meant for multipath.
For example, in MPTCP, as long as packet loss is recov-
ered by a fast retransmit, i.e., the receiver sends Duplicated
ACKS (DupACKs) to signal missing packet(s) to the sender;
these packets are recovered in the same subflow. Otherwise,
if packet loss is detected by a Retransmission Timeout (RTO),
they are also retransmitted on other subflow(s).

These loss detection and recovery mechanisms were
designed with some assumptions about the underlying net-
works and they are known to perform suboptimally in some
cases, especially when delay and loss rates are high [72].
Therefore, there is interest to apply approaches such as For-
ward Error Correction (FEC) and Network Coding (NC) [73]
in transport protocols. In FEC, input data is encoded at the
sender resulting in a combination of source and repair pack-
ets, where repair packets are used to recover lost packets at
the receiver. On the other hand, NC can be performed at the
sender and on intermediate nodes (all or a subset of them).

In the past, different FEC and NC algorithms have been
proposed inside the transport layer, in particular for TCP,
where the implementations were often in conflict with the
congestion control operation and prohibitively complex [74].
For multipath, FEC and NC mechanisms are applied in the
subflow level [75], [76], i.e., in the single path transport
protocol connection (subflow) to alleviate the heterogeneity
of the underlying paths, especially when these have different
loss rates.

IV. REVIEW OF MULTIPATH TRANSPORT LITERATURE
This section provides a review of literature addressing main
aspects of the functionalities of multipath transport protocols,
i.e., path management, scheduling, congestion control, and
reliable transfer, as introduced in Section III. In particular, the
reviewed works are categorized in terms of ATSSS modes,
in order to emphasize how they can be exploited in ATSSS
to improve 5G multi-connectivity, ultimately contributing to
achieving eMBB and URLLC service requirements.

A. MULTIPATH PATH MANAGEMENT
Besides path establishment provisioning, the path manager
can support the implementation of the ATSSS modes. More
specifically, the implementation of handover closely resem-
bles the Active-Standby ATSSS steering mode, where a path

3In QUIC, even though it is implemented on top of UDP, the reliability
mechanisms are present and designed following the ideas in TCP [71].
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manager tries to use the active network access and switch
to the standby path after a certain number of retransmis-
sions. This operation mode is very similar to MPTCP in
Apple iPhones. Similarly, a path manager that establishes
subflows over all paths combined with a packet scheduler
that favors subflows with the lowest RTT resembles Smallest
Delay ATSSS steering mode as well as MPTCP’s Linux
operation.

Exploring path management in handover scenarios, [33]
performs a real-world study using WiFi/3G to show that
MPTCP maintains application connectivity when moving
between network connections. In addition, by sparing one
bit as an echo bit in Remove Address and Add Address
options, and [33] develops a scheme to tackle application
degradation. Depending on the active states of paths during
handover, [33] shows that MPTCP can decrease the appli-
cation delay for VoIP up to 20 times than single path TCP.
In [77] the authors summarize the points that should be
considered on the radio access network when implement-
ing data offloading with MPTCP covering complementary
coverage, spectrum aggregation and utilization, radio plan-
ning, RF load balancing, channel holding time, deployment,
backhaul capacity, and mobility. Reference [78] investigates
handover connection disruption and glitches with MPTCP.
To improve service continuity during handovers, it uses a
proactive cross-layer assisted mechanism with Signal-To-
Noise (SNR) and Bandwidth-Delay Product (BDP) based
CWND adjustments. During handover, mechanism proposed
in [78] can reach 2 to 5 times throughput increase compared
with the default MPTCP. Reference [79] presents an ana-
lytical model for multipath WiFi/cellular handover, which
derives the aggregate handover time, providing a tool for
tuning the cellular bitrate to satisfy the users’ transmis-
sion requirements while maximizing the network resource
utilization efficiency.

In the path management implementations available in
MPTCP, full-meshmight be more suitable for Internet scenar-
ios, exploring all possible combinations between IP addresses
of two hosts, thus, supporting applications that aim at load
balancing or improving throughput. Similarly, Ndiffports
was originally designed for datacenter networks to enable
load-balanced paths with Equal CostMultipath (ECMP) [80].
Default is implemented to passively accept the creation of
new subflows. Finally, while not a path manager in the strict
sense, binder [81] focuses on community networks to help
applications to benefit from gateway aggregation using loose
source routing. For the examined scenario of dramatic net-
work changes in the period of 3 seconds, binder consistently
outperforms TCP baselinewith an improvement ranging from
20% to 60%.

In MPQUIC the design of path management is on-going
work, where, so far, it is taking a different approach com-
pared to MPTCP. To date, in MPQUIC, the proposal is that
hosts can signal and negotiate via frames how to establish
and use network paths during the connection lifetime, see
Section III-A. In other words there are no path management

implementations serving different scenarios such as it is the
case in MPTCP.

Finally, leveraging SCTP for path handover, [82]–[85] and
several others surveyed in [86] cite the problems of spurious
retransmissions, unnecessary CWND reductions and reorder-
ing caused by path handover. Reference [87] evaluates the
feasibility to combine both CMT and SCTP with dynamic
address reconfiguration as a potential enhancement to the
handover schemes.

B. MULTIPATH SCHEDULING
Multipath scheduling is in charge of distributing data onto
different paths. This is a core function in a multipath trans-
port protocol, since wrong scheduling decisions can lead
to performance decrease, particularly due to out-of-order
data delivery at the receiver. In [25], [59], it is shown that
Round-Robin (RR) is only effective when paths are homo-
geneous. Thus, to guarantee multipath transport performance
enhancements with any combination of network paths, many
scheduling approaches have been proposed. We categorize
them into six categories resembling ATSSS steering modes
introduced in Section II-E: 1) Smallest Delay, 2) Best-Access,
3) Priority-based, 4) Load-balancing, 5) Redundant, and
6)Active-Standby. Note that, whilemanymultipath scheduler
algorithms are applicable accross protocols, some algorithms
may explore features of the transport protocols that may be
available in one implementation but not in the other, e.g., the
notion of streams in CMT-SCTP and MPQUIC is absent in
MPTCP. In the following, we refer to stream-based multipath
schedulers when applicable to each of the ATSSS categories.

We notice that minRTT is by definition the only scheduling
algorithm mapping to Smallest Delay steering mode. It is the
default algorithm in MPTCP [88], and prioritizes the path
with the lowest estimated RTT, if it is not congested. As the
congestion level increases, minRTT redirects traffic on the
other paths.

In Best-Access steering mode, the definition of ‘‘best’’ is
generally referred to as the best performance, but refers to
the estimated latency of the paths in most of the literature.
The estimated latency uses other features besides RTT as
information, thus somehow extending the Smallest Delay
steering mode. Out-of-order Transfer for In-order Arrival
(OTIAS) [89] is, in many aspects, similar to Earliest Comple-
tion First (ECF) [61]. They apply a proactive approach [62],
i.e., the path with the shortest transfer time is prioritized
regardless of the congestion level (CWND space). There-
fore, the transfer time also includes the time of waiting for
the space in the CWND, which is different from a reactive
approach, e.g., minRTT. The work in [90] applies a similar
approach but taking stream priority inMPQUIC into account.
Blocking Estimation-based (BLEST) [60] reduces receiver
buffer blocking by prioritizing the faster path using RTT,
inflight packets, CWND, and send window size as estimates.
Shortest Transmission Time First (STTF) [62] comes as a
fine-grained shortest delay version of BLEST targeting short
flows. Compared with the default scheduler minRTT, BLEST
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and STTF are particularly shown to reduce web object trans-
mission timeswith up to 51% and provide 45% faster commu-
nication for interactive applications. In terms of cross-layer
approaches, Quality Aware (QAware) [91] incorporates the
local queue buffer occupancy information of the Network
Interface Card (NIC), aiming to improve the estimation of
end-to-end delay. QAware can provide an improvement with
up to 37% over the minRTT scheduler. The work in [92]
focuses on throughput in cloud networking, creating sub-
flows over disjoint paths, and using cross-layer information
from MPTCP and the Location Identifier Separation Proto-
col (LISP) to learn about paths’ diversity. Furthermore, [93]
proposes a cross-layer scheduler for video streaming, using
both application and transport layer information. Different
from the above approaches, [94] proposes the client-based
multipath TCP (cMPTCP) that aims to be deployed over
multiple LTE networks from different operators. cMPTCP
utilizes the client to infer the bottleneck state of an end-to-
endMPTCP connection, aiming for a more accurate selection
of the best-access. cMPTCP is shown to outperform the
default minRTT with up to 18.5% and the other state-of-the-
art multipath schedulers such as ECFwith up to 11.7% for the
download throughput. Applying machine learning to deter-
mine the best-access path leads to another set of approaches.
Reles [63] uses offline reinforcement learning, i.e., a Deep
Q-Network (DQN), to train a multipath scheduler with
throughput as the reward, and delay and packet loss as penal-
ties. A similar approach is applied in [64], where a penalty is
given when the number of unacknowledged packets exceeds
a limit. Applying online learning in MPQUIC, Peekaboo [65]
proposes a multipath scheduler that is aware of the dynamics
of the paths and can adapt its scheduling strategy accordingly.
More recently, [95] proposes an enhancement to Peekaboo,
i.e., M-Peekaboo, capable of handling high oscillations in
terms of network path characteristics, i.e, delay, bandwidth
and loss, observed in 5G millimeter wave network paths.
These scheduling approaches based on machine learning in
general outperform the selected scheduling approaches that
are not based onmachine learning. For example,M-Peekaboo
is shown to outperform BLEST with up to 28.7% in the
emulated 5G networks.

The Priority-based steering mode can include both the
Smallest Delay mode and Best-Access mode. However,
we try to assign the works from literature to the steering
mode that is as specific as possible, thus only covering
the works that are exclusive in the Priority-based steering
mode here. The works belonging to this steering mode use
pre-defined priority information to influence the scheduling
decision. MP-DASH [96] proposes a scheduling framework
for video streaming that is aware of network interface prefer-
ences from users, e.g., prioritizing WiFi over cellular links.
The scheduling decision is deducted by solving an integer
programming problem tominimize the usage of the unwanted
path while trying to meet users’ Quality of Experience (QoE)
requirements. The results indicate thatMP-DASH can reduce
cellular usage by up to 99% and radio energy consumption

by up to 85% with negligible degradation of QoE, compared
with off-the-shelf MPTCP. The work in [97] adopts the pur-
chased price of the path as the prior information. It is assumed
that, under a guaranteed throughput, the users prefer to use
the path having lower costs. Then, by applying Lyapunov
optimization, the paper aims to maximize the throughput
while minimizing the price cost for users. Also adopting the
path cost to derive the priority, [98] proposes a cost-based
scheduling algorithm, which simultaneously reduces the cost
of multipath use for network operators and also retains the
QoE levels required by the end-users in case of bursty video-
on-demand traffic. Both [97] and [98] present that it is
possible to maintain the performance metric as the default
minRTT, while decreasing the cost ranging from 20% tomore
than 50%.

The goal of Load-balancing steering mode is to assign
a number of packets for each path, aiming to balance the
load over different paths. The main difference with the other
steering modes is that it directly schedules a group of packets
together, while the other steering modes schedule on a per-
packet basis. When assigning packets to paths, the existing
works usually take into account the capacity and latency of
each path. Forward Prediction Scheduling (FPS) [99] predicts
the packets’ arrival time and sends packets in a manner
that they are expected to be received. Delay Aware Packet
Scheduling (DAPS) [100] assigns the number of packets over
each path based on the ratio of RTT between the paths.
Reference [101] considers the RTT of different paths for
load-balancing at the sender side to specifically rearrange the
transmission order of the packets. An approach for actively
sensing the paths’ status and quality is proposed in [102],
aiming to address the inaccurate estimation of the path
latency when assigning the load to each path, caused by the
underlying wireless networks. References [99], [100], [101],
and [102] mainly provide comparisons with RR and show
throughput increase ranging from 10% to 40%. The mech-
anism proposed in [103] is tailored for lossy networks and
takes loss rates into account to model and estimate latency
and data amount to send on each path. According to the exper-
imental results, [103] can increase the download throughput
around 10% compared to FPS. Reference [104] argues that
although pre-allocating packets over different paths seem to
ensure in-order-arrival, there often exists a mismatch between
the estimated and the real transfer time, especially in wire-
less networks. To compensate for the inaccurate estimation,
a gap composed of several packets that are not yet scheduled
is left between the packets sent over different paths, and
is self-adjusted based on ACKs which can reflect the out-
of-order arrival degree. Reference [104] shows throughput
improvements of up to 30% when the in-network buffer is
limited, and 15% when the host buffer is limited, compared
to ECF. In [105], PStream explores priority-based stream in
MPQUIC making use of stream to alleviate head-of-line-
blocking in heterogeneous environments. Evaluation shows
that PStream can reduce up to 25.4% of page load time in high
path heterogeneity, compared to minRTT. Focusing on video
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QoE [106], NineTails is a multipath MPQUIC scheduler that
utilizes selective multipath redundancy to control tail loss and
near-tail loss latencies in heterogeneous wireless networks.
With this design thought, NineTails is shown to decrease the
tail application latency up to 18%.

In Redundant steering mode, some or all packets are dupli-
cated to enhance the service reliability and obtain the lowest
latency over different paths. ReMP [107] proposes duplica-
tion for all the packets to reduce latency and increase relia-
bility. For a real world mobile scenario in a stressed dynamic
environment, ReMP TCP can halve the average round-trip
time and reduce its standard deviation by a factor of 19.
However, this comes with a substantial bandwidth overhead.
Hence, several multipath scheduling algorithms categorized
under Redundant mode actually provide advanced solutions,
which in essence combine Redundant with other ATSSS
steering modes, ultimately paving the way towards ATSSS
enhancements. For example, leveraging selective packet
duplication, the work in [108] proposes an adaptive mech-
anism that duplicates packets only when a path degrades,
estimated by observing one-way-delay fluctuations, and com-
bines this with the Load-balancing mode. Targeting vehicle-
type applications, Redundancy-Aided VEhicular Networking
(RAVEN) [109] proposes a trade-off between data usage and
duplication degree, introducing a confidence interval in the
scheduling: If all packets are duplicated, 100% confidence
interval is achieved. In its mechanisms, RAVEN jointly cov-
ers Redundant and Smallest delay steering modes. Neverthe-
less, although significant gains ranging from 24.5% to 53.2%
are obtained, both [108] and [109] only provide comparisons
against default minRTT. [110] proposes REdundant Diver-
sity scheduling (RED) which prioritizes packet replication
by uncorrelated paths, selecting paths and replicates packets
based on the Spearman’s correlation coefficient. Compared
with pure redundant multipath scheduler, like ReMP, RED
can achieve up to 30% higher throughput. Similarly, but
targeting high loss networks, [111] proposes an adaptive
duplication scheme based on the estimation of the per path
loss rate, thus balancing Redundant and Best-access modes,
the latter using RTT and loss rate in order to determine the
path latency. While the proposed approach maintains mean
delay at the same level of ReMP and up to 3 times smaller
than minRTT, it can reach up to 2 times of throughput over
ReMP and at the same level of minRTT.

The Active-Standby steering mode utilizes only one active
path for transmission while other paths are used for backup.
Thus, it focuses on the seamless handover applied in multi-
path, which is also studied in the literature [33], [36], [82].
Furthermore, several multipath proposals lie across multi-
ple ATSSS steering modes. For example, the mechanism
introduced in [58] initially tries all paths and suspend the
path with a low score to ensure in-order packet delivery,
ultimately combining Active-Standby with Smallest delay.
Similarly, [112] decides if the scheduler should stop using
a certain path when the RTT difference against the faster
path is larger than a defined threshold. Both [58] and [112]

present the decrease of download completion times, rang-
ing from 20% to 40% depending on the path combinations.
MPTCP-MA [113] uses MAC-layer information to estimate
the path status of WiFi specifically and to possibly suspend
its use during intermittent connectivity caused by the short
signal range and susceptibility to interference. Experimental
results show that MPTCP-MA can efficiently utilize an inter-
mittently available path, withWiFi throughput improvements
of up to 72%.

Finally, besides the scheduling algorithms reviewed above
and categorized across different ATSSS steering modes, there
are other works providing a multipath programming model
or framework [93], [114]–[118]. In these references, the
existing multipath scheduling algorithms exist as plugins and
are called by the application via the provided Application
Programming Interface (API).

C. MULTIPATH CONGESTION CONTROL
In line with its main design goals discussed in Section III-
C, the multipath congestion control is in charge of a) avoid-
ing harmful interaction with concurrent single-path traffic,
and b) shifting traffic away from congested paths, thus load
balancing and improving throughput. Therefore, among the
different steering modes, congestion control can be con-
sidered partially as the Load-balancing steering mode in
ATSSS.

The development of multipath congestion control algo-
rithms, formally described in [69], dates back to 2005,
when [119] explores the coupled CWND adjustment,
in which all subflows belonging to the same multipath
connection are adjusted simultaneously whether to increase
or reduce their CWND. Then, Equally-Weighted TCP
(EWTCP) [120] is proposed, which applies TCP NewReno
on each MPTCP subflow independently, i.e., fairness to reg-
ular TCP is not the goal and each subflow is independent.
To improve the performance of non-congested subflows, [69]
proposes Linked-Increases Algorithm (LIA) which is a cou-
pled congestion control where only the CWND of subflows
experiencing congestion are reduced. However, it has been
reported in [121], [122] that LIA could behave unfriendly
towards regular TCP in some scenarios. Hence, Opportunistic
Linked-Increases Algorithm (OLIA), which is also a cou-
pled congestion control, is proposed in [121], [122]. OLIA
explores the concept of Pareto optimality, i.e., the equilibrium
of a resource allocation problem, where one flow cannot
gain more resources without damaging the resources of other
flows. From the experiments, OLIA is observed to let the
single-path user to improve 2 times higher throughput than
LIA. Meanwhile, OLIA significantly reduces the conges-
tion level at the bottleneck, up to 6 times lower compared
to LIA.

Along the same coupled congestion control design, [123]
proposes Path Associativity Congestion Control (PACC),
requiring that MPTCP subflows do not take a greater aggre-
gate bandwidth than a single-path TCP flow on a shared
bottleneck. Then, [124] studies a rate control to improve
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multipath transmission by simultaneously keeping fairness
to regular TCP. The subflow rate of the proposed congestion
control can be obtained from an optimization problem having
TCP-friendliness as a required constraint. A parameterized
formula to generalize the CWND update is given in [125].
In this approach, the optimization goal lies within a design
space comprising fairness and responsiveness, where fair-
ness can be sacrificed for higher responsiveness, resulting
in higher throughput. Later, on the basis of [125], the work
in [126] shows that OLIA can be unresponsive to network
changes and proposes Balanced LinkedAdaptation (BALIA).
By generalising existing multipath congestion control algo-
rithms, BALIA is able to dynamically balance the trade-off
between friendliness to regular TCP and responsiveness thus
complying to the coupled congestion control approach. The
results show that, under the condition of guaranteeing the fair-
ness, BALIA can still reach up to 4 times faster convergence
time than OLIA.

Evaluated in server farms, [127] proposes One-ended
multipath TCP (OmTCP), which modifies TCP’s Selective
Acknowledgment (SACK) option and fast retransmit mech-
anisms to adjust the sender rate to be fair to regular TCP.
A TCP-friendly congestion control algorithm is proposed
in [128] for the multipath Host Identity Protocol (mHIP). The
work designs a two-level mechanism, which applies single-
path additive-increase/multiplicative-decrease (AIMD) and a
global congestion control that adjusts the aggressiveness of
each connection against regular TCP in a shared bottleneck.
Built upon the delay-based congestion control rather than the
loss-based ones, [129] proposes weighted Vegas (wVegas),
which uses packet queuing delay to infer congestion instead
of packet loss and adjusts the subflow’s CWND. Compared
with LIA, wVegas is shown to be more sensitive to changes
of network congestion and thus achieves more timely traffic
shifting and quicker convergence. The experimental result
also shows the improvement of fairness for wVegas, e.g.,
when wVegas is 12.3% off from the optimal fair allocation
among two paths, LIA is 54.7% off from the optimal fair
allocation.

Recently, [130] proposes a reinforcement learning scheme
in multipath congestion control, i.e., SmartCC which takes
an ACK as a reward and applies Q-learning to manage the
CWND. SmartCC improves the median throughput of OLIA
with 32%. However, this approach does not consider fair-
ness to the regular TCP, i.e., it is an uncoupled conges-
tion control approach. Considering fairness to the regular
TCP, [131] employs the online convex optimization of the
online learning to design the congestion control algorithm for
MPTCP, named MPCC. Repeatedly, MPCC first selects the
per-subflow rates and then receives the performance impli-
cation quantified by the utility function. The online convex
optimization approach derives the per-subflow rates by aggre-
gating the value of the utility function. Results show that
MPCC provides an improvement (both in the mean and the
median) of around 2.3 times in terms of file download speed
over MPTCP with OLIA.

D. RELIABLE TRANSFER
To benefit either throughput or reliability and latency in mul-
tipath transport, adding encoded packets to the application
data of the multipath transfer is proposed in combination
with multipath schedulers. Such reliable transfer mechanisms
exploit redundancy, which can be considered as the Redun-
dant steering mode in ATSSS. However, while the redundant
steering mode in ATSSS may already guarantee enough reli-
ability for the application, e.g. by simply duplicating packets
on more than one network access, the transport layer may
or may not introduce reliability as part of its scheduling,
i.e., potentially adding a second reliability level. As example
of [132] mentions the drawback of MPTCP in ATSSS when
carrying unreliable traffic, e.g., UDP, as it retransmits every
lost packet leading to increased delay. Originally, the goal of
redundancy in the transport layer was to avoid data retrans-
mission over higher latency paths. In ATSSS, an additional
redundancy level introduced by the transport layer could
be explicitly used to map different packets, e.g., data or
redundancy, onto different network accesses. This is however
implementation specific. In the following, we enlist relevant
literature in reliability applied to multipath transport without
considering ATSSS.

Applying the coding upon base protocol of SCTP, [133]
proposes eCMT-SCTP as the version of CMT-SCTP with
erasure codes. Three different types of erasure codes are
considered, i.e. block, convolutional and on-the-fly erasure
codes integrated within CMT-SCTP. The evaluation targets
generic web applications using fully reliable CMT-SCTP
and video streaming using an equivalent of partially reliable
CMT-SCTP. To further improve the performance, a modifica-
tion of the SCTP retransmission mechanism is also proposed,
with a variable retransmission delay (aRTX) based on the
type of error correction code. Reference [133] shows that
eCMT-SCTP can achieve from 10% to 80% improvements in
application goodput than CMT-SCTP under lossy multipath
network conditions with a minimal (10%) overhead due to the
encoding-decoding process.

Applying the coding upon base protocol of TCP, [134] pro-
poses Network Coding-based MPTCP (NC-MPTCP), which
introduces NC to some of the subflows. The core idea is
the mixed use of regular and network-coded subflows, where
regular subflows deliver application data and network-coded
subflows deliver linear combinations of application data.
NC-MPTCP outperformsMPTCP with up to 26% upon lossy
paths and performs similarly to MPTCP when the paths
are homogeneous and at low loss rates. Multipath Loss-
Tolerant (MPLOT) [135] exploits multipath diversity with
erasure codes. MPLOT presents throughput aggregation in
both homogeneous and heterogeneous multipath scenarios,
outperforming the defaultMPTCPwithout erasure codeswith
up to 21.5%. Systematic CodingMPTCP (SC-MPTCP) [136]
proposes to mitigate packet reordering for a constrained
receive buffer, by proactively transmitting redundant pack-
ets. The redundant packets are continuously updated
according to the estimated aggregate retransmission ratio.
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Across experiments over paths with different heterogeneities
and loss rates, SC-MPTCP can reach 3-8 times the average
throughput compared to MPTCP. Coded TCP (C-TCP) [137]
is implemented in user-space and only considers the case
with two WLAN paths with systematic block codes. Further,
C-TCP applies a modified version of congestion control,
compared with what standard TCP applies, in two aspects:
firstly, it takes both loss and delay as feedback signals instead
of loss solely; secondly, it introduces a token to allow the
sender to transmit a packet instead of CWND. Fountain
code-based MPTCP (FMTCP) [138] exploits the random
nature of the fountain code to flexibly transmit encoded sym-
bols from the same or different data blocks over different sub-
flows, which aims to mitigate the negative impact of the path
heterogeneity. FMTCP demonstrates gains of more than 50%
in aggregation over MPTCP are obtained in experiments with
a non-shared bottleneck scenario. Reference [139] focuses on
the experimental study of using NC over MPTCP in a car
with cellular and WiFi links. A comparison between MPTCP
and MPTCP/NC is presented using both the empirical data
and mean-field approximation. The results show that network
coding can provide users in mobile environments a higher
quality of service, e.g., transmitting 100 times of packets
per second than that of MPTCP when the lossy connection
presents. QuAlity-Driven MultIpath TCP (ADMIT) [140]
focuses on real-time high definition H.264 video using
a MPTCP-model with FEC. It focuses on goodput, end-
to-end delay and Peak Signal-to-Noise Ratio (PSNR) and
presents the improved performance in these three aspects
compared with not only MPTCP but also the aforementioned
MPLOT and FMTCP. Stochastic Earliest Delivery Path First
(S-EDPF) [141] integrates a novel low delay FEC scheme
to increase the robustness of each channel and thereby mini-
mizes the retransmission delay.Moreover, it models each path
by considering the stochastic factor to increase the reliability
of each decision. Reference [141] also reuses the framework
of C-TCP [137] as introduced earlier. Reference [75] imple-
ments an XOR-based FECwithin TCP, to aid multipath trans-
port with heterogeneity. In such a case, the advantages of an
XOR-based FEC approach are low computational overhead
and simple implementation, where TCP’s original segment
structure can be maintained. However, the obvious disadvan-
tage is that it can only recover one segment per block, e.g.,
if two or more packets are lost within a block the FEC packet
is wasted.

Applying the coding upon base protocol of UDP or the
combination of UDP and TCP, Bandwidth-Efficient Multi-
path Streaming (BEMA) [142] is built for H.264 video over
multiple paths, considering quality metrics including video
Peak Signal-to-Noise Ratio (PSNR), end-to-end delay, and
goodput. Compared with FMTCP, BEMA improves PSNR
by up to 23.3%, reduces end-to-end delay by up to 27.2%,
and improves the goodput by up to 12.9%. BEMA uses UDP
and TCP with TCP-Friendly Rate Control (TFRC) [143] and
applies systematic Raptor codes and FEC adaptivity. Target-
ing towards QUIC, [144], [145] apply the use of FEC in

MPQUIC. The experimental results indicate the performance
increase compared with MPQUIC without FEC, especially
in lossy networks. Similar to regular TCP, this can alleviate
the burden of the congestion control layer of QUIC, espe-
cially in lossy networks where it is difficult to differentiate
whether a loss is caused by link layer or congestion drop.
Reference [146] targets multipath streaming protocols and
builds upon its own multipath UDP. The work develops an
analytical model and uses asymptotic analysis to derive a
closed-form, optimal load splitting solution, based on the
joint solution using FEC and multipath. Reference [147] pro-
poses Multipath Multimedia Transport Protocol (MPMTP)
and is constructed over both TCP and UDP flows. The TCP
flow is used to exchange the control packets while the UDP
flows are used to exchange the data. The work adapts the
Raptor encoding parameters during the transfer, considering
time-varying wireless networks and Raptor codes complex-
ity. [148] targets the design of a strict time-critical transmis-
sion system using trace data frommultipath UDP. FEC is used
to optimize latency and reliability of the fixed-rate application
traffic over channels with time-varying capacity. With the
employed FEC mechanism, the reliability can be increased
by up to 21.8% than the one without, depending on the code
rate.

Finally, several proposals leverage the benefits of NC
with MPTCP [149]–[154], however, they mainly focus on
the integration of NC in the TCP level, not profiting from
improvements from multipath transport.

E. MULTIPATH TRANSPORT AND 5G REQUIREMENTS
Based on the multipath transport literature surveyed through
Sections IV-A, IV-B, IV-C, IV-D, and considering the map-
ping proposedwith theATSSSmodes defined in Section II-E,
we now summarize how the references fit into 5G require-
ments and, more specifically, how they could bring benefits to
eMBB and/or URLLC services. The overview of the mapping
between multipath literature, ATSSS modes, and 5G services
are summarised in Table 2.
The use of multipath transport in 5G ATSSS is a clear

enabler of eMBB and URLLC requirements addressing both
high throughput and high reliability as well as low latency
requirements. Generally speaking, multipath transport pri-
marily supports bandwidth aggregation from different net-
work paths, thus supporting eMBB slices to achieve higher
throughput. In URLLC, slices benefit from multipath trans-
port when scheduling policies based on shortest delay can
take advantage of path redundancy, using the best lowest
delay path currently available. The multipath transport solu-
tions in Table 2 implemented as path management, schedul-
ing, congestion control or reliable transfer algorithms can,
in combination with the ATSSS modes in Section II-E bring
benefits to eMBB and URLLC slices. In the following, while
we focus on examples of multipath scheduling solutions
applied to each of the ATSSS modes, we also highlight how
other multipath solutions map to them.
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TABLE 2. Mapping between multipath solutions, ATSSS modes, and 5G services (PM: Path Management, SCH: Scheduling, CC: Congestion Control, REL:
Reliable Transfer).
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TABLE 2. (Continued.) Mapping between multipath solutions, ATSSS modes, and 5G services (PM: Path Management, SCH: Scheduling, CC: Congestion
Control, REL: Reliable Transfer).

Intuitively, Smallest Delay or Best-Access modes target
5GURLLC requirements. The Best-Accessmode generalizes
the Smallest Delay mode, since it targets the use of the
access offering the best performance for a defined metric,
which is still latency in many cases. However, by exploiting
RTT together with other path characteristics, e.g., CWND,
send window, RTT variation, etc., Best-Access can lead to
enhanced scheduling policies, which can be beneficial for
both eMBB and URLLC slices. On the other hand, assuming
a multipath scheduler that takes a single metric into account,
the goal of Best-Access might not be efficiently achieved. For
example, disregarding path characteristics such as loss rates
in combination with RTT, may not sufficiently address the
requirements of URLLC or eMBB.

The Active-Standby mode foresees use cases combin-
ing this mode with others, e.g., Smallest Delay. As such,
Active-Standby endows the Smallest Delay mode the ability
to completely or periodically suspend the underperforming
path, thus potentially leading to improved performance as
compared to Smallest Delay alone. With the combination
of Active-Standby and Smallest Delay modes, the goal of
serving packets over the lowest latency path remains, which
is beneficial for both eMBB and URLLC.

The Priority steering mode often foresees priority related
to financial considerations at the user side, e.g., cost per
bit sent on each path. Hence, a common approach is to set
users’ priority as the constraint for the optimization problem.
The optimization goal can be however throughput-specific,
which applies to eMBB, but also related to both latency and
throughput, e.g., in deadline-aware video streaming applica-
tions, which thus maps to URLLC.

The Load-balancing mode balances traffic on the available
accesses by sending a corresponding amount of packets or
flows. An accurate load-balancing can maximize throughput
and, in turn, improve eMBB performance. This applies not
only to multipath scheduler solutions but also to the con-
gestion control, which is mainly associated with eMBB in
Table 2. The rationale is that one of the main objectives of
congestion control is to maximize throughput while behaving
friendly to other parallel connections (see Sections III-C
and IV-C). We note however that current ATSSS specifica-
tions do not target a specific mode for congestion control.

Finally, the Redundant mode and reliable transfer mech-
anisms can be primarily adopted to meet high reliability
requirements by URLLC services. How redundancy is uti-
lized, plays a key role for meeting the expected latency
and/or throughput performance. In this context, raw packet

duplication over all paths may guarantee low latency while
also enhancing reliability. However, this approach will result
in significant overhead impacting the throughput. The over-
head can be reduced by controlling the level of redundancy,
i.e., duplication, which in turn will negatively affect relia-
bility. In this view, FEC and NC approaches can deliver a
better balance between throughput, latency and reliability
by avoiding retransmissions and heavy redundancy overhead
while still providing a certain degree of reliability. While
most of the works in this category target throughput, some
specifically control the redundancy degree to optimize for
latency and reliability, see [135], [137], [138], [147]. More-
over, the combination of Redundant mode with other ATSSS
modes can expand the applicability of the correspondingmul-
tipath solutions, i.e., Load-balancing combined with Redun-
dant multipath schemes can be leveraged in both eMBB and
URLLC.

V. OPEN RESEARCH ISSUES
The stringent requirements of 5G with high throughput, low
latency and high reliability pose great challenges to research.
Although incorporating multipath transport protocols in 5G
is one of the solutions that targets and meets some of these
requirements, we find some open research issues that deserve
some attention. We summarize the key issues as follows.

A. EMERGING 5G APPLICATIONS
5G enables several new use cases compared to previous
generations of cellular networks. While many works in the
existing literature propose multipath transport solutions for
improving traditional applications such as video stream-
ing and web download, emerging 5G use cases, such as
AR/VR, remote haptic control, autonomous driving and
industrial remote control, have very different characteristics
and requirements. For example, when interfacing with a
robotic system, the requirements over each packet or flow
could be different, e.g., packets could have distinct priori-
ties due to different tasks and associated update frequency.
Similar challenges are expected for other use cases, e.g.,
AR/VR, where traffic flows having different requirements,
e.g., in terms of latency and reliability, are expected to be
simultaneously exchanged in both downlink and uplink direc-
tions. Such complex systems are also often composed of a
mixture of event- and time-driven tasks, where packet pri-
orities and payload lengths can be less predictable. There-
fore, how to exploit network access resources to address the
requirements of these new applications while meeting critical
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system requirements, is a complex new challenge that needs
further investigation.

B. TRANSPORT PROTOCOL FEATURES AND 5G
MULTI-CONNECTIVITY
QUIC comes with connection migration, decoupling the
transport layer connection from the underlying IP address,
thus, seamlessly supporting the transition of a QUIC connec-
tion from one access network to another. Related to ATSSS,
this feature natively supports Steering and Switching, i.e.,
a QUIC connection can be seamlessly moved from one net-
work access to another. MPTCP can, on the other hand,
support both ATSSS Splitting and Switching, delivering a
smoother transition between network accesses, as a conse-
quence of utilizing multiple paths simultaneously. Compared
to QUIC, MPTCP can natively support more than a single
ATSSS mode and serve use cases when more than a single
network access is available and could be leveraged by the
application. If MPQUIC is not adopted by ATSSS as envi-
sioned, a QUIC-based solution is limited to Switching and
Steering.

In the scenario where ATSSS supports Splitting, it is
expected that the UE throughput increases. The underlying
network access characteristics from frequency bands, e.g.
mid- or high-bands, to transport layer characteristics, e.g.
RTT, CWND, and packet loss rates, will determine howmuch
higher the throughput can be. Due to the interaction of the
radio with the environment or due to interference, it is not
always the case that the promised high data rates can be
guaranteed [95], and the support of additional paths can be
crucial in such scenarios.

Apart from the recently adopted RFCs for QUIC at the
IETF, there are several ongoing works around its future that
are related to multi-connectivity. They include the multipath
extension as well as an unreliable datagram extension [157],
i.e., allowing traffic that does not need to be retransmitted.
They also include evolving QUIC to be a generic tunnelling
protocol for any type of traffic, i.e., not limited to a specific
transport layer nor a specific protocol. We expect these devel-
opments to impact the future of ATSSS: from adoption of
MPQUIC and thus supporting more than the basicmodes and
moving beyond the basic Steering, Splitting and Switching
defined in Release 16 to enabling more flexible use cases and
deployments.

C. POTENTIAL ADVANCES IN ATSSS
In the context of ATSSS Release 16, the modes discussed
throughout this work largely focus on transport layer solu-
tions using MPTCP. While ATSSS for Rel-17 (Phase 2) [16]
and beyond (Phase 3) [43] are still ongoing work and having
focus on QUIC and MPQUIC applied to ATSSS, we believe
that there will be many opportunities to improve the perfor-
mance and flexibility of ATSSS, once the proposed solutions
are more settled and adopted. For example, it can be bene-
ficial to consider the adoption of different multipath trans-
port protocols based on their built-in features and upcoming

extensions, specially in QUIC, for different scenarios. As
specified in Release 16, ATSSS proposes the use of MPTCP
to handle TCP traffic with a MPTCP proxy in the UPF, thus,
excluding UDP and traffic from other layers such as IPsec
and services such as Virtual Private Network (VPN). The
ATSSS-LL (Lower Layer) function below IP is meant in
this phase for this sort of traffic. In Release 17, ATSSS is
meant to provide a more general transport solution to tunnel
Ethernet frames over IP packets using QUIC, thus, including
support for both TCP and UDP traffic. Here, if MPQUIC is
adopted, it could support Splitting along with Steering and
Switching. Tunneling non-TCP traffic over QUIC is possible,
but as QUIC connections are fully encrypted and therefore
cannot be intercepted, e.g., terminated at the UPF, a solution
such as the ATSSS Release 16 with MPTCP is not possible.
The added benefits and flexibility offered by QUIC, such as
support for multi-streaming and more efficient loss recovery,
motivate the interest in QUIC for a complementary generic
and more flexible solution for ATSSS [14]. In this context,
the above mentioned ongoing work at the IETF to design
an unreliable datagram extension to QUIC for real-time data
will be important, considering the large spectrum of new 5G
applications and emerging URLLC use cases.

The current ATSSS modes are also very coarse-grained.
For example, in the current conceptual description of steer-
ing modes, the smallest delay mode is logically included
in the best-access mode. Additionally, FEC and NC are not
considered part of the steering modes, even though it is
shown they can provide great benefits towards low latency
and reliability. Considering more fine-granular modes and
extending the current modes to also cover congestion control
and reliable transfer aspects will be of great importance mov-
ing forward. Finally, since ATSSS may have many different
available plugins in terms of the transport protocol, schedul-
ing, congestion control, FEC and NC, it will be important to
consider how to integrate with or further develop the existing
multipath programming models and frameworks introduced
in Section IV-B.

D. MULTIPATH IN THE 5G NR ERA
Most of the existing multipath research is based on current
cellular and local area networks and they tackle heteroge-
neous paths by looking at the mean value of path delay, loss
rate, etc., while few others tackle the dynamicity of heteroge-
neous paths. However, 5G NR, specially at higher frequency
bands, will inevitably bring higher dynamicity to the paths
due to millimeter Wave (mmWave), line-of-sight require-
ments induced by beamforming or the handover between
macro and small cells in more dense deployments. Therefore,
future work needs to focus on such dynamicity by efficiently
utilizing the statistical distribution of the path delay, loss,
etc. To achieve this, we need to first better understand the
path characteristic of 5G NR. To this end, experimental open-
source 5G platforms such as mmFlex [158], and open source
components such as openairinterface [159] that build on
software-defined radio [160] will be crucial.
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E. DATA-DRIVEN APPROACHES
Most of the existing multipath research apply mathematical
modeling and optimization to design rule-based multipath
algorithms. The advantage of these solutions is that they are
often of low computation complexity, and the behavior of
the algorithm they rely on is easily explainable. However,
considering the dynamicity of the paths, especially in 5G as
discussed above, such an approach might lack the ability to
adapt to different path conditions.

Another approach is to unleash the power of data-driven
algorithms in the multipath protocol design. The first trend
towards this direction is to utilize the available labeled data
from the transport layer itself to do classification and pre-
diction. The second trend is, given the fact that real-world
data are not labeled, to apply unsupervised learning (e.g.,
clustering) or reinforcement learning to derive appropriate
policies. The advantage of data-driven solutions is that they
have the potential to learn over different path conditions and
accordingly adapt to them. However, they may lack explain-
ability, which might be even more severe in URLLC, where
reliability is difficult tomathematically prove ormeasure, i.e.,
you have 100% reliability until the first packet loss happens.
Therefore, we argue that future research in this direction
should bear the explainability point in mind. Moreover, data-
driven solutions are normally of higher computation com-
plexity compared to the rule-based counterpart, but this can
be alleviated nowadays by using specialized hardware used
for data-driven tasks.

F. MULTIPATH CONGESTION CONTROL FOR 5G
Several multipath congestion control algorithms were pro-
posed with the notion of end-to-end network fairness, i.e.,
flows sharing a bottleneck must receive the same resource
amount, e.g., bandwidth, from the network perspective.
This has historically influenced the design and performance
of multipath transport protocols such as MPTCP [161].
We argue that this particular fairness notion can be revisited
for ATSSS for one main reason: The use of multiple access
technologies, such as the combination of 3GPP and non-
3GPP. ATSSS scenarios include in general different tech-
nologies, which often belong to distinct underlying network
infrastructures, e.g., the non-3GPP access does not share the
same radio base station as the 3GPP access.

Therefore, the strict assumption about shared bottlenecks
may become less relevant compared to when the focus was
on end-to-end Internet scenarios. The difference in communi-
cation patterns can be recalled from Figure 5 in Section II-D,
where the core-centric integration path depicts the flows from
both radio access technologies from the UE, i.e., cellular and
WLAN, being aggregated into a single flow before leaving
the cellular core network to the Internet. From the point
where the flow leaves the cellular network, the notion of
network fairness is still valid. In contrast, the above-the-core
integration path depicts when both flows are transparent to
the cellular core network, running end-to-end as a multipath
flow.

VI. CONCLUSION
On the road to 5G, one of the design trends is moving towards
aggregating multiple access networks. Multipath transport
protocols, which exploit multiple network paths at the trans-
port layer, play an essential role in such a design trend.
We have presented what we believe to be the first survey
of multipath transport protocols for 5G, subjecting to the
standardized ATSSS architecture. With respect to this sur-
vey, we have reviewed the research efforts by academia and
industry and the standardization efforts by 3GPP and IETF.
Also, we have studied the characteristics of these works and,
based on which, we have proposed their integration based
on the ATSSS functionalities and steering modes, as well as
suggesting their applicable 5G services. In addition to the
foreseen benefits of incorporating multipath transport proto-
cols into 5G, we also point out major existing research issues.
We believe that our survey will serve as a guideline for future
research works in applying multipath transport protocols for
5G and beyond.
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FALCON: Fast and Accurate Multipath Scheduling
using Offline and Online Learning

Hongjia Wu, Özgü Alay, Anna Brunstrom, Giuseppe Caso, Simone Ferlin

Abstract—Multipath transport protocols enable the concurrent
use of different network paths, benefiting a fast and reliable
data transmission. The scheduler of a multipath transport pro-
tocol determines how to distribute data packets over different
paths. Existing multipath schedulers either conform to predefined
policies or to online trained policies. The adoption of millime-
ter wave (mmWave) paths in 5th Generation (5G) networks
and Wireless Local Area Networks (WLANs) introduces time-
varying network conditions, under which the existing schedulers
struggle to achieve fast and accurate adaptation. In this paper,
we propose FALCON, a learning-based multipath scheduler
that can adapt fast and accurately to time-varying network
conditions. FALCON builds on the idea of meta-learning where
offline learning is used to create a set of meta-models that
represent coarse-grained network conditions, and online learning
is used to bootstrap a specific model for the current fine-grained
network conditions towards deriving the scheduling policy to deal
with such conditions. Using trace-driven emulation experiments,
we demonstrate FALCON outperforms the best state-of-the-art
scheduler by up to 19.3% and 23.6% in static and mobile
networks, respectively. Furthermore, we show FALCON is quite
flexible to work with different types of applications such as bulk
transfer and web services. Moreover, we observe FALCON has a
much faster adaptation time compared to all the other learning-
based schedulers, reaching almost an 8-fold speedup compared to
the best of them. Finally, we have validated the emulation results
in real-world settings illustrating that FALCON adapts well to
the dynamicity of real networks, consistently outperforming all
other schedulers.

I. INTRODUCTION

The 5th Generation of mobile communications (5G) raises

the expectations towards three key performance aspects: very

high data rates, ultra-reliable and low-latency communications,

and massive connectivity. To accommodate these require-

ments, the concurrent use of multiple Radio Access Tech-

nologies (RATs), i.e., multi-connectivity, is one of the key

solutions highlighted in 5G systems [1]. Among several 5G

multi-connectivity schemes [2], multipath transport protocols,

such as multipath Transmission Control Protocol (MPTCP) [3]

and multipath QUIC (MPQUIC) [4], have recently gained

significant attention. In particular, this is due to the Technical

Specification (TS) 23.501 (Release 16) by 3rd Generation

Partnership Project (3GPP) [5], where it is discussed how 5G

systems can take advantage of multipath transport protocols to

support the Access Traffic Steering, Switching and Splitting

(ATSSS) architecture, ultimately enabling multi-connectivity

between 3GPP access, such as Long Term Evolution (LTE)

and 5G New Radio (NR), and non-3GPP Wireless Local Area

Networks (WLAN), such as WiFi.

Among the functionalities of multipath transport protocols,

the multipath scheduler plays a key role since it regulates

the distribution of data packets over different available paths

(i.e., the available RATs), ultimately impacting the achievable

performance in terms of experienced throughput, latency,

and connection reliability. The design of a high-performing

multipath scheduler is a challenging problem, especially under

high time-varying network conditions, e.g., in the case of

millimeter wave (mmWave) paths with high propagation losses

and sensitivity to blockage [6]. To operate well in such

challenging conditions, a multipath scheduler should be able

to meet two main targets: a) fast adaptation, i.e., adapt its

scheduling policy quickly to the network conditions, and b)

accurate adaptation, i.e., the scheduling policy should capture

the network conditions accurately.

Existing multipath schedulers are either based on predefined

rules (e.g., using the path with minimum Round Trip Time

(RTT)) or on Machine Learning (ML) schemes (e.g., using a

Reinforcement Learning (RL) algorithm to select the best path

to use under some specific network conditions). Schedulers

based on predefined rules define a priori, rules based on the

network conditions that they will adapt to (cf. Section II-B).

As these schedulers do not need to learn the scheduling policy

to use, their adaptation time is negligible meeting the fast

adaptation target. However, the predefined rules often result

in a coarse-grained scheduling policy that might not adapt

well to the current network conditions, particularly when such

conditions vary rapidly. Thus, schedulers based on predefined

rules have difficulty in meeting the accurate adaptation target.

Schedulers based on ML use, in particular, online learning
approaches, observe the current network conditions and adapt

to them by deriving a corresponding scheduling policy (cf.

Sections II-B and II-C). Compared to schedulers based on

predefined rules, they require extra time for learning the

policy, thus resulting in slower but possibly more accurate

adaptation to network conditions. In fact, a trade-off exists for

these schedulers in terms of fast vs. accurate adaptation. On the

one hand, if the scheduler (i.e., the learning agent) employs a

complex learning architecture, e.g., a deep neural network [7],

[8], it may converge to an accurate policy but this may require

more time, thus inhibiting fast adaptation. On the other hand,

if the scheduler employs a simple learning scheme, e.g., a

lightweight RL algorithm [9], [10], it may converge faster at

the cost of accuracy.

To address the above challenges faced by online learning

schedulers, we argue that scheduling operations may bene-

fit from further training based on offline learning. Indeed,

a scheduler may use previous experience on already faced

network conditions for deriving proper model(s) for newly

encountered conditions; then, such model(s) can be exploited
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by the online learning algorithm for obtaining a fast and

accurate scheduling policy. This idea is further clarified and

justified throughout Sections II and III. Within the above

context, this paper proposes FALCON, a ML-based multipath

scheduler that combines online and offline learning. FALCON

builds on the idea of meta-learning [11], [12], where a meta-

model is set up via offline learning and fine-tuned via online

learning. The online learning experience also feeds back to the

offline learning function to form a closed loop for continuously

updating the meta-model. The contributions of our work can

be summarized as follows:

• We present the necessity for a multipath scheduler to

be able to adapt fast and accurately to varying network

conditions and show that existing multipath schedulers

have difficulty to meet this objective;

• We design FALCON, an ML-based multipath scheduler

that combines the benefits of offline and online learning

for deriving trained multipath scheduling policies with

a reduced amount of input data. To the best of our

knowledge, our work is the first systematic study on

multipath scheduling that optimizes both adaptation speed

and accuracy to time-varying network conditions;

• We implement the protocol aspects of FALCON in

MPQUIC using quic-go and the learning aspect of

FALCON using keras-rl. All software components of

FALCON are provided as open-source to the community.1

• Using trace-driven emulations, we demonstrate fast and

accurate adaptation and thus the superior performance

of FALCON for applications of bulk transfer and web

service with multi-streaming support compared to the

state-of-the-art multipath schedulers.

• We validate the emulation results in real-world settings

and show that FALCON outperforms all other schedulers

in realistic network conditions.

The rest of this paper is organized as follows. We first

summarize the foundations and related work of our work in

Section II. We then specify the research problem and provide

an overview of FALCON in Section III. We next detail the

design of FALCON in Section IV. We present the experimental

setup in Section V and evaluate the performance of FALCON

via emulations in Section VI and real-world experiments in

Section VII. We finally conclude our work in Section IX.

II. FOUNDATIONS AND RELATED WORK

In this section, we summarize foundations and related work

of FALCON, including aspects related to multipath transport

(Section II-A), multipath scheduling (Section II-B), and learn-

ing in networking scenarios (Section II-C).

A. Multipath Transport Protocol

Multipath transport protocols are designed to achieve higher

throughput and resilience compared to their single-path coun-

terparts, since they can leverage several paths simultaneously

and support seamless failover. In particular, two multipath

1Upon acceptance of the paper.

protocols have wide support from both standardization and

research communities: MPTCP and MPQUIC.

MPTCP [3] is the multipath extension of TCP and has

the goal of being transparent to both higher and lower pro-

tocol layers. Its design and operation are influenced by the

proliferation of middleboxes, meddling in end-to-end TCP

connections, and preventing TCP extensions as well as the

deployment of new transport protocols. Adopting several suc-

cessful features of TCP, QUIC became recently an attractive

alternative, as it integrates Transport Layer Security (TLS)

and improves latency at the connection start. Differently from

TCP, QUIC encrypts most of the protocol headers and all

payloads to prevent interference from middleboxes. Motivated

by the success of MPTCP, there are already some MPQUIC

implementations proposed as multipath extensions of QUIC

[4], [13]. We leverage MPQUIC to perform the analysis of

multipath schedulers in this paper, as we believe it will play

a key role in determining the multi-connectivity performance

in 5G.

B. Multipath Scheduling

The multipath scheduler is in charge of distributing packets

over the available paths. In the following, we describe two

categories of multipath schedulers: Based on predefined rules

and based on ML schemes.

Schedulers based on predefined rules: Traditional multipath

schedulers follow predefined rules that do not change over

time. For example, a Round Robin (RR) scheduler cyclically

sends packets over each path, as long as there is space

in the congestion window (CWND) of the paths. RR may

perform reasonably well when the available paths have similar

characteristics (i.e., paths are homogeneous). However, since it

does not consider the characteristics of the individual paths it

is unable to prevent out-of-order packet arrival at the receiver,

which is detrimental to multipath transport performance. The

minimum RTT (minRTT) scheduler has shown that consid-

ering and exploiting path characteristics, e.g., by sending

packets on the path with available CWND and lowest RTT,

allows achieving higher throughput [14]. Indeed, minRTT is

the default scheduler in both MPTCP and MPQUIC.

Other schedulers based on predefined rules have been pro-

posed over the years. Blocking Estimation (BLEST) [14] and

Earliest Completion First (ECF) [15] try to provide both high

throughput and low latency. Assuming two available paths,

when both paths have CWND availability, BLEST and ECF

behave like minRTT, i.e., they select the path with the lowest

RTT. When the path with the lowest RTT has no CWND

availability, BLEST and ECF use different mechanisms to

decide whether it is better to send packets on the path with

the highest RTT or wait for the path with the lowest RTT

to become available again. Addressing specific use cases and

applications, the works in [16], [17], [18] apply an adaptive

packet duplication mechanism to guarantee robustness, which

proves to be effective when extra data usage and battery con-

sumption are not limiting factors. The work in [19] proposes

the Slide Together Multipath Scheduler (STMS) to reduce out-

of-order packet arrivals and, thus, the receiver buffer problem.
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[20] proposes a loss-aware scheduler targeting networks with

more than 20% loss rates. [21] proposes the Short Transfer

Time First (STTF) scheduler, targeting low latency for short

transfers and considering TCP specific aspects such as the

TCP Small Queues (TSQ). Lastly, [22] proposes a multipath

scheduler for MPTCP that targets IEEE 802.11 ad/ac WLANs.

Schedulers based on ML: Nevertheless, confronted with the

complexity of the network conditions, it is difficult for sched-

ulers based on predefined rules to guarantee the accuracy for

various environment characteristics. Multipath scheduling can

be also thought of as a decision-making problem thus naturally

fitting into scenarios that RL schemes aim to solve, including

multi-armed bandit problems (MAB) and Markov decision

processes (MDP). For this reason, there is an emerging interest

in developing ML-based multipath schedulers. Adopting the

MAB framework, [9] combines the Linear Upper Confidence

Bound (LinUCB) algorithm and a stochastic adjustment to

design a multipath scheduler in MPQUIC, namely Peekaboo,

that shows improved performance in dynamic heterogeneous

networks compared to schedulers based on predefined rules.

Then, [10] proposes Modified-Peekaboo (M-Peekaboo) by

extending the learning scheme of Peekaboo for path selec-

tion, aiming at extending the applicability range towards 5G

mmWave networks. Framing the scheduling problem as an

MDP, [7] exploits the Deep Q-Network (DQN) architecture

to design a multipath scheduler in MPTCP, namely Reles,

which shows performance gains over minRTT. Similarly, [8]

also designs a multipath scheduler using DQN in MPQUIC,

resulting in no clear performance gain over minRTT.

C. Learning Concepts in Networking

As mentioned in Section I, our proposed scheduler, FAL-

CON, belongs to the category of schedulers based on ML.

However, as also clarified later, we aim at not only leveraging

previous scheduling approaches, all based on online learning

but also to include offline learning, to improve the overall

performance. Hence, in this section, we provide an overview of

both offline and online learning approaches currently consid-

ered and adopted in networking applications more generally,

thus, not limited to multipath scheduling. Then, we also

provide a high-level description of meta-learning, which is the

actual framework used in FALCON for leveraging offline and

online learning functionalities.

Offline learning: This paradigm assumes that, in order to

derive a model of and/or a policy for a generic environment,

an ML algorithm uses environment characteristics, i.e., data,

collected well-ahead, before the derived model is meant to be

used. In the following, we refer to pre-collected data as offline
data. The learning outcome, e.g., the policy to be used by

a network protocol, is not modified once derived on offline

data. In other words, there is no retraining. Therefore, the

assumption is that offline data includes a complete enough

set of environment characteristics that could be experienced

when the model/policy is actually used. To mention a few,

offline learning is used to derive offline data-based policies for

congestion control using optimization approach [23], Adaptive

Bit Rate (ABR) streaming using DQN [24] or Asynchronous

Advantage Actor Critic (A3C) [25], and device resource

management using DQN [26] or Support Vector Machine

(SVM) [27]. To the best of our knowledge, offline learning

is not currently used for multipath scheduling.

Online learning: This paradigm assumes that to derive a

model and/or policy, an ML algorithm uses data that is

collected while the model/policy is being derived and used.

In the following, we refer to run-time collected data as

online data. Differently from the offline learning paradigm,

the learning outcome is thus modified and adapted at run-

time, exploiting newly encountered environment characteris-

tics, i.e., new online data. This is commonly performed via

two main approaches, i.e., with or without the use of an

abandoning mechanism. In the first approach, the model/policy

is abandoned when either a significant change in the envi-

ronment characteristics is detected via so-called change point
detection [9], [28], or a predefined timer expires [29], [30],

[31]. Peekaboo [9] and M-Peekaboo [6] are relevant examples

of schedulers that use an online learning approach with the

change point detection. In the second approach, the online

learning algorithm does not apply the abandoning mechanism,

i.e., the model/policy is continuously updated since the algo-

rithm is continuously fed with online data [32]. Hence, in

this case, there is no abrupt model/policy abandoning, which

may cause a slower reaction to sudden changes in the envi-

ronment characteristics. Examples of multipath schedulers that

use online learning with no abandoning mechanisms are [8],

[7]. It is worth mentioning that the aforementioned online

learning approaches may face the well-known catastrophic

forgetting problem [33]. Indeed, with or without abandoning

mechanisms, the continuous feed of online data may result in

the derivation of new models/policies; old models/policies that

resulted to be optimal for specific environment characteristics

may thus be discarded, and they need to be re-discovered if

the same environment characteristics reappear. As a remedy,

for example, [34] tries to apply lifelong learning for video

streaming to alleviate the catastrophic forgetting problem.

Meta-learning: The meta-learning paradigm, also known as

“learning to learn” [35], combines online and offline learning.

The goal of meta-learning is to derive (offline) a so-called

meta-model for the set of learning tasks an ML algorithm

needs to solve. The meta-model is built so that it can be

rapidly adapted (online) to any new learning task that may

be encountered, exploiting just a few experiences from the

new task. The works in [11], [12] validate a meta-learning

framework that can be used in several learning tasks, e.g.,

it can be applied to both supervised ML (regression and

classification) and RL scenarios. Other works propose meta-

learning for more specific scenarios, i.e., the update rule and

selective copy of weights of deep networks [36], [37], [38] and

recurrent networks [39], [40], [41]. In this paper, we design

FALCON based on meta-learning paradigm to obtain fast and

accurate scheduling policies.

III. PROBLEM STATEMENT AND SOLUTION OVERVIEW

In this section, we explain the research problem (Section

III-A) and provide an overview of our solution (Section III-B).
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A. Problem Statement

The network conditions faced by a multipath scheduler

vary in time, due to network congestion, users’ mobility,

dynamic characteristics of the wireless channels, etc. The

recent use of mmWave spectrum in cellular networks and

WLANs further increases this variability [42], [43]. Hence,

as highlighted in Section I, a multipath scheduler should be

able to adapt fast and accurately to challenging time-varying

network conditions. Upon detection of a change of the network

condition by the scheduler, adapting fast indicates that the

adaptation time for realizing the adapted policy should be

as small as possible; adapting accurately indicates that the

adapted policy should match the current network condition

as much as possible. This is, however, a difficult task, and

the design of a multipath scheduler that can adapt fast and
accurately to time-varying network conditions is an open

research problem.

In the following, we clarify the limitations of existing sched-

ulers (based on either predefined rules or learning paradigms)

in meeting the above objective. Then, we also analyze the

limitations that schedulers based on a pure offline learning

approach would face. This analysis serves for further moti-

vating our approach in designing FALCON, summarized in

Section III-B and detailed in Section IV, where we combine

the benefits of offline and online learning approaches.

Schedulers based on predefined rules can adapt fast but not

accurately to time-varying network conditions. This is due to

the inherent limitation caused by predefining the rule to follow

for scheduling packets over the available paths. Indeed, the

rule is usually rather simple and coarse-grained (e.g., select

the path with minimum average RTT), thus failing to adapt

accurately to the complex dynamics of the network conditions.

Schedulers based on online learning can ensure the deriva-

tion of an accurate scheduling policy. In general, however,

the need for learning the network conditions online makes the

adaptation slower compared to schedulers based on predefined

rules. In order to speed up adaptation, schedulers based on

online learning can sacrifice accuracy, thus exploiting a limited

amount of data (observed network conditions) and a simple

learning architecture for deriving a policy. In the follow-

ing, we refer to these schedulers as Type-I online learning

based schedulers. As empirically shown in [10], state-of-the-

art Type-I schedulers still face challenges in satisfying the

requirements in terms of adaptation time of modern networks,

e.g., 5G mmWave. If accurate adaptation is preferred over fast

adaptation, the online scheduler can exploit a larger amount

of data and a more complex learning model. In the following,

we refer to these schedulers as Type-II online learning based

schedulers.

Schedulers based on offline learning may intuitively seem

like a reasonable approach for achieving both fast and accurate

adaptation. An offline learning-based scheduler may adapt fast

because it is pre-trained. Moreover, such a scheduler might

achieve accurate adaptation if trained on all the possibly

encountered network conditions. However, this assumption

is rather unrealistic for two main reasons: (1) Collecting

all possible network conditions (past and future) is nearly
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Figure 1. An illustration of the FALCON architecture.

impossible [44], [45]; (2) Even if all combinations of network

conditions could be found, it is difficult to accurately label

each of them mathematically. Hence, several combinations of

network conditions may be involved in the pre-training, and

the obtained model would still have a coarse-grained match

with the fine-grained network conditions.

B. Solution Overview

In this work, we design and implement a scheduler based on

learning. We make this choice since, compared to schedulers

based on predefined rules, schedulers based on learning have

the ability to learn from the encountered network conditions

and adapt to their variability over time.

To solve the research problem and overcome the limitations

of online-only and offline-only learning-based schedulers out-

lined above, we propose FALCON, a multipath scheduler that

combines offline learning and online learning. The key idea in

FALCON is to use the meta-learning framework as offline

learning to create a set of meta-models that represent the

network conditions. Then, the set of meta-models is used by an

online learning algorithm to bootstrap a specific model for the

current network conditions and derive the scheduling policy

to deal with such conditions. The meta-models are created so

that they can converge to any specific model with only a small

amount of online data.

On the one hand, the set of meta-models is a common root

for the specific models. It is a sort of global view and thus,

in contrast to the specific models, it is not very sensitive to

the variability of network conditions. Hence, it can be updated

at a relatively slow rate. On the other hand, online learning

performs a fine-tuning of the meta-models and eventually
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obtains the specific model that suits the current network

conditions. Hence, online learning operations are performed at

a faster rate so to cater to the changes in network conditions.

In other words, the model update is split into low-frequency

and high-frequency updates.

Compared to the offline-only learning approach, FALCON

has the ability to adapt to the current environment without

labeling the current network conditions specifically to avoid

the issues of both dealing with unseen network conditions

and matching a coarse-grained model to a fine-grained net-

work condition. Compared to Type-I online learning based

schedulers, FALCON efficiently uses more data and a refined

learning architecture, thus achieving a higher accuracy without

sacrificing fast adaptation. Compared to Type-II online learn-

ing based schedulers, the loop of creation and refinement of

meta-models allows achieving faster adaptation without sacri-

ficing accuracy. Figure 1 illustrates the FALCON architecture

whose main functions can be summarized as follows:

Offline Learning: Based on the experiences from the online

learning module, the offline learning module partitions the

experiences into different groups, based on the network con-

ditions. For each group of experiences, the offline learning

module performs meta-learning and derives a meta-model.

The offline learning is set up tackling the changes of meta-

model in real-world scenarios. The shared knowledge stored

in the meta-model does not change in a very fast manner but

rather an extremely gradual manner to slightly adjust with the

internal representation in the real-world, thus updating in a

very slow frequency.

Online Learning: The online learning module continuously

monitors the change of network conditions. Depending on

the outcome of the change detection, the online learning

module may choose to deploy the current model (no changes

are detected) or perform the model retraining (a change is

detected). In the second case, the online learning module

performs a training from a meta-model selected based on the

group where the current network condition belongs. Thus, the

online learning loop updates in a fast frequency.

Information Exchange: Online and offline modules cooperate

and exchange experiences and meta-models in a recursive

loop, as also shown in Figure 1.

IV. FALCON DESIGN

In this section, we describe FALCON’s algorithm by pre-

senting its pseudo-code and the learning strategies adopted in

the offline and online learning modules (Section IV-A). Then,

we further specify the learning elements needed for setting up

FALCON operations (Section IV-B).

A. Algorithm

Algorithm 1 reports FALCON pseudo-code. As also illus-

trated in Figure 1, FALCON leverages both offline and online

learning via dedicated modules that exchange current experi-

ence and meta-models in a recursive loop. In the following,

we provide more details on both modules.

Offline learning module: This module derives a set of meta-

models that represent, on a high-level, the network conditions

Algorithm 1 FALCON pseudo-code.

Input:
1) Tupd: Update interval of meta-models;

2) RS: Set of network condition ranges for meta-models;

Offline learning module:
1: while True do
2: Exp = CollectOnlineExperience();
3: ΘS = MetaLearn(Exp,RS);
4: Wait(Tupd);
5: end while

Online learning module:
6: while True do
7: ΘS = CollectOfflineMetaModels();
8: Exp = Execute(CurrentPolicy);
9: DetectedChange = ChangeDetect();

10: if DetectedChange then
11: Θ = SelectMetaModel(RS,ΘS);
12: NewPolicy = FewShotLearn(Θ);
13: CurrentPolicy ← NewPolicy;
14: end if
15: end while

under which FALCON operates. The meta-models enable the

online learning module to timely derive an accurate scheduling

policy for the current network conditions. To do so, FALCON

leverages the concept of meta-learning, where the main idea is

to find a meta-model, denoted Θ, for solving a generic learning

task. Meta-model Θ represents the common starting point

from which a number of refined models, that map onto more

specific learning tasks, can be derived. For example, a meta-

model is a high-level knowledge that a RL agent may have

on how to navigate mazes (i.e., a generic task). Then, when

the agent is deployed in a maze with specific characteristics

(i.e., a specific task), it can exploit the high-level knowledge

so to quickly learn how to navigate that specific maze [11].

Indeed, Θ is created so that the refined models that match

specific tasks can be derived in a few gradient steps. The

requirement of Θ is that starting from Θ, the online model

can converge within several online gradient steps to match the

presented network condition. In other words, Θ guarantees

that a few-shot learning [46], [47] is sufficient for finding the

refined models. Considering that one online model may have

several convergence points within the parameter space subject

to the common machine learning paradigm, Θ ensures the

convergence points of different online models are close by

each other.

Assuming to have a distribution of specific tasks, the

derivation of meta-model Θ follows this general procedure:

1) Initialize Θ;

2) Randomly sample a task from the task distribution;

3) Perform K steps of gradient descent updates on the

task, starting from Θ, so to obtain a new representation,

denoted W ;

4) Update Θ, that is, Θ ← Θ+λ(W −Θ), where λ is the

learning rate (0 < λ ≤ 1);

5) Repeat steps 2− 4 until Θ is found to be optimal by the

adopted optimization routine.
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Once derived with the above procedure, meta-model Θ can

be used as a starting point for finding any specific model that

suits a newly encountered task, by only using a small amount

of experience collected on this new task [11], [12].

In our scenario, the learning tasks of FALCON are the

different network conditions it may encounter and it should

adapt to by deriving specific scheduling policies. In particular,

we consider packet loss rate, mean RTT, and RTT variation

rate of the available paths as indicators of network conditions.

Moreover, FALCON adopts a DQN in the online learning

module to derive its scheduling policies. Therefore, Θ is

defined as the initial set of parameters of the deep neural

network used by DQN in the online learning module. Among

common gradient descent approaches, we apply the mini-batch

gradient descent rather than the stochastic gradient descent to

cater for the use of DQN.

Note that the creation of a unique meta-model for all

possible network conditions may require a significant increase

of the number of gradient steps (K) needed to converge

to an optimal Θ. Therefore, FALCON does not create a

unique meta-model for representing all network conditions,

but instead creates a set of meta-models, i.e., ΘS (subscript

S stands for set). Each meta-model in ΘS is then created so

to cover only a partial range of possible network conditions.

For example, assuming to have two available paths, the x-th

meta-model in ΘS, i.e., Θx, covers the range where, on path

1, packet loss rate is between [a, b] %, mean RTT is between

[c, d] ms, and RTT variation rate is between [e, f ] %, and

similar bounds are defined for path 2.

The number of meta-models and the ranges of network

conditions covered by different meta-models are predefined,

as reported in Section V. In the following, RS denotes the

set of ranges on which the meta-models operate. As shown

in Algorithm 1, the offline learning module updates ΘS with

a predefined update interval, i.e., Tupd. To do so, it first

collects experience on the currently deployed policy (state,

action, reward, as defined in Section IV-B) and on current

network conditions (packet loss rate, mean RTT, and RTT

variation rate), denoted Exp, from the online learning module.

Then, using the set of network conditions in Exp, and

comparing them with RS, the offline learning module updates

the corresponding meta-models in ΘS, following the procedure

described above.

Online learning module: This module runs continuously

for deriving the scheduling policies to use under different

network conditions. FALCON uses a change point detection

mechanism to trigger the selection of the meta-model that

covers the new conditions, and the derivation of a new policy

leveraging the selected meta-model.

Change point detection is thus an important aspect in

FALCON, and it is particularly important in the wireless

scenarios it faces, since these scenarios often result in high

dynamicity and network changes, e.g., handovers. Intuitively,

one could fix a detection interval and monitor the statistics of

network conditions in such an interval. Then, if the difference

of statistics exceeds a threshold, a change in network condition

is detected. How to setup the detection interval is, however,

not trivial: if the interval is too short, the change detection

may be affected by short-term noise; if it is too long, actual

changes might be lost. A similar problem exists for setting

up the threshold that identifies an actual change in network

conditions. In short, a hard-coded setup of detection interval

and threshold is not a viable approach.

Therefore, since both gradual and sudden network condition

changes are expected to happen in dynamic and heterogeneous

networks, e.g., 5G mmWave [42], we leverage the drift the-

ory [48] to observe the variability of network conditions. In

particular, FALCON adopts the well-known Bayesian change

point detection algorithm [49] for monitoring loss rate and

RTT on the available paths. On the one hand, the RTT is a

continuous signal, and thus it can be used as is in the Bayesian

change point detection algorithm; on the other hand, packet

loss is a binary information (i.e., a packet can be either lost

or not lost). To tackle this aspect, FALCON counts the packet

losses over groups of packets, thus moving from a Bernoulli

distribution to a binomial distribution of packet losses, and

finally obtaining a relatively continuous signal.

As shown in Algorithm 1, upon detection of a change in

network conditions, the online learning module selects the

meta-model in ΘS that covers the range that the current net-

work condition belongs to by checking the network conditions

against RS over a short period of data transmission. When

localizing the current network condition, there might exist bias

due to the noise. Recall that the meta-model covers a range of

link characteristics in FALCON, which reasonably tolerates

these biases. Once the meta-model is selected, FALCON

performs a K-step fine-tuning of the meta-model and, via

DQN, derives the scheduling policy to adopt. Finally, FAL-

CON deploys and uses the new policy until a new change is

detected. Since the learning agent does not grow its knowledge

base from null rather from the shared knowledge, the cost of

adaptation is fairly small as shown in Section VI.

B. Learning Elements

As anticipated in Section IV-A, FALCON uses a DQN

architecture for deriving the policy at run-time, and exploits

the meta-learning paradigm to speed up such derivation while

preserving accuracy. Therefore, the entire framework is a MDP

that FALCON solves via meta-learning plus DQN. In the

following, we provide a few more details on the learning

elements of the overall framework.

State space: The state in a MDP is the information observed

by a learning agent on the status of the environment that the

agent is facing during the learning process. In our scenario,

FALCON is the learning agent and the environment state is

defined via transport layer parameters of the available paths,

i.e., CWND, number of Inflight Packets (InP), Send Window

(SWND) and RTT. The first three features are normalized by

RTT to impose a tight connection to the throughput, that is the

reward FALCON obtains while operating, as introduced later.

Action space: This set includes the actions FALCON can

select when it deploys a scheduling policy, and upon which

it gets a reward. In our scenario, the available actions depend

on the number of available paths. In this work, we mostly
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consider two available paths, which is a common assumption

in 5G multi-connectivity scenarios [5]. However, the action

set of FALCON can be naturally extended and include more

paths. Hence, by taking an action, FALCON decides about

the path to use for exchanging a data packet. In the context

of multipath scheduling, this indicates that the action set can

be different when a path is congested or not congested, which

complicates the learning agent. We choose to naturally inherit

this information from the state while appointing the path

in a straightforward manner regardless of the path’s current

congested status.

Reward function: As common in a MDP, FALCON aims at

maximizing a so-called discounted return, where the instanta-

neous rewards, corresponding to the throughput obtained upon

selection of a path, are cumulated after being discounted via a

so-called discount factor, that can be interpreted as the interest

of the scheduler in maximizing short vs. long-term return. The

employment of the discounting factor ensures that the impact

of the current action decreases over time.

RL algorithm: As anticipated above, FALCON uses DQN

in the online learning module for deriving the scheduling

policy. DQN is a well-known model-free algorithm that does

not require any knowledge of the state transition probability

distribution and the reward function. On the contrary, it just

needs to observe the instantaneous rewards obtained when

actions are selected, and the corresponding transition across

states. While considering complexity as a primary factor,

we select DQN also due to its popularity, which makes

possible a direct comparison with other DQN-based state-of-

the-art schedulers, as introduced in Section II-B. However,

it is worth to mention that FALCON is based on a rather

flexible framework and can be thus easily extended toward the

adoption of other algorithms in the online learning module.

Exploration vs. exploitation: Due to the presence of the

information exchange between the offline and online learning

modules, FALCON requires a certain degree of balance be-

tween exploration and exploitation. Hence, it adopts a fixed ε-
greedy exploration mechanism, with ε not decaying over time.

In particular, a relatively large value of ε, denoted εl, is used

when setting up these initial meta-models, aiming for higher

sampling efficiency; on the contrary, a relatively small value

of ε, that is, εs, is used when the meta-models are continually

updated and also when the selected meta-model is fine-tuned

to derive the scheduling policy.

Synchronous vs. asynchronous learning: In the original pro-

posal of DQN and common deep RL paradigms, the interac-

tion with the environment and the update of the neural network

happen in a synchronous fashion. However, these synchronous

operations do not work well in a real system where there

usually exist either soft or hard real-time requirements. For

example, in our case, the online update of the neural network

could block the scheduling routine in the communication stack.

We thus employ asynchronous updates [50], implemented by

using a separate process for the online learning: A network

process is in charge of the data collection and performs the

scheduling while a trainer process is in charge of neural

network updates based on the collected data.

V. EXPERIMENTAL SETUP

In this section we present the experimental setup, including

the configuration of FALCON, the selected baseline multipath

scheduling algorithms, and the experimental environment.

A. Configuration of FALCON

We implement the learning components of FALCON based

on keras-rl [51], a popular deep reinforcement learning

library. We employ a fully connected neural network with three

hidden layers and a rectified linear activation function (ReLU)

as the activation function. The learning rate of the neural

network is 0.001, while εl and εs are 0.3 and 0.1, respectively.

The mini-batch size is 32 and K is 16. For the ranges of

network conditions that the meta-models cover over each path,

we implement that the packet loss rate can be in between

[0, 1)%, [1, 5)%, and [5, 100]%; mean RTT can be in between

[0, 50) ms, [50, 200) ms, and [200,+∞) ms; the ratio of RTT

deviation to mean RTT can be in between [0, 40)%, [40, 80)%,

and [80,+∞)%. Thus, one path, by combination, can have 27

different coarse-grained states and two paths, by combination,

can have 729 different coarse-grained states. Accordingly, the

number of meta-models in total is 729. The online experiences

are periodically written to a comma-separated values (CSV)

file and the neural networks representing the meta-models are

saved into the Hierarchical Data Format version 5 (HDF5) file.

We set the specific parameters of FALCON based on our

experimental analyses in Section VIII-A. We believe these

are reasonable design choices in practice, and note that our

analysis enables tuning this parameter to accommodate other

scenarios. Unless stated otherwise, our evaluation of FALCON

uses these default values.

B. Configurations of the protocol stack

At the transport layer, we perform our analysis using

MPQUIC due to the increasing interest in QUIC-based ap-

plications. Accordingly, the QUIC is originally implemented

within quic-go [52] and, based on which, one of the

earliest versions of MPQUIC is implemented and adopted in

this work. Further we use the default multipath congestion

control algorithm in the adopted MPQUIC code base, i.e.,

Opportunistic Linked-Increases Algorithm (OLIA) [53].

At the application layer, we perform both bulk transfer and

web download to evaluate the aggregation capability of the

multipath schedulers. For the bulk transfer, each experiment

run performs an HTTP GET request for a file of 2 MB,

and records the download times. For the web download, we

consider web pages from different websites including Google,

Github, and Stackoverflow, as shown in Table II, and we record

the download times. Transport layer state variables are reset

before each request. To ensure statistically significant results,

for each path configuration, we repeat the experiments 120

times for each multipath scheduler.

C. Benchmark Algorithms

We select minRTT and BLEST as the representative algo-

rithms of the schedulers based on predefined rules, for two
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Table I
EMULATION PARAMETERS FOR THE STATIC SCENARIO,

COLLECTED FROM MEASUREMENTS IN THE LITERATURE.

Parameter Link Technology
5G
[42]

4G
[42]

WLAN
[54][55]

Bandwidth [Mbps] ∼ 1100 140 30
Round trip time (RTT) [ms] 27.4 ± 6.4 29.2 ± 4.8 20.0 ± 10.0

Packet Loss Rate [%] 0.1 0.1 0.7

Table II
PARAMETERS OF SELECTED WEBSITES FOR THE WEB

DOWNLOAD TEST.

Website Parameters
Number of Objects Size

Google 8 1.3 MB
Github 61 4.5 MB

Stackoverflow 120 7 MB

reasons: 1) the strategies they exploit consider the challenges

originating not only from the homogeneous networks but also

the heterogeneous networks; 2) recent evaluations show that

they either perform similarly or better than other schedulers

belonging to the same category (e.g., RR and ECF) [6], [9].

For the offline learning-based schedulers, as there is not any

multipath scheduling algorithms in the literature, we refer to

a recent implementation in the area of ABR streaming [24],

and implement a DQN-based multipath scheduling algorithm,

named DQN-Off. In the implementation, while keeping the

concept of offline training, we utilize the off-policy character-

istics of DQN rather than a simulated environment to achieve

this goal. That means, DQN off-policy is able to learn from

information retrieved from past experience rather than direct

interaction with the environment. Moreover, we use the same

learning elements used by FALCON, described in Section

IV-B.

For Type-I online learning based schedulers, we refer to

the M-Peekaboo algorithm that can exploit the linUCB and

stochastic adjustment algorithm to learn the scheduling policy

[6]. For Type-II online learning based schedulers, the DQN-

based scheduler designed in [8] fails to provide clear per-

formance gains over schedulers based on predefined rules,

while [7] shows performance gains. However, the authors

of [7] do not disclose the source code, and we do not have

enough information to reproduce the work. Hence, we use

all the information that can be extracted from [8] and [7],

and implement a DQN-based online multipath scheduler, i.e.,

DQN-On. In particular, within the framework provided by [8],

we exploit the same state space, action space, and reward

function used by FALCON, to have a higher granularity

representation in the constructed MDP. Then, we also adopt the

asynchronous online update mechanism used in [7], originally

proposed in [50], to speed up the training time of DQN when

applied to real-world applications. Although [7] refers to this

asynchronous online update mechanism as a combination of

online and offline learning, we highlight that this is in essence

an implementation choice of inter-process communication, and

thus it differs from the concept of online and offline learning

defined in this work.

D. Experimental environment

We perform experiments over both emulated and real-world

urban canyon environments. In both cases, we consider two

scenarios: static, where we assume the user is stationary, and

mobile, where the user is walking and/or driving a vehicle.

In the emulated experiments, aiming at a controlled but real-

istic evaluation, we leverage link characteristics derived from

real measurements, with both network traces and statistical

values, as shown in Table II. The environment is emulated

using Mininet [56]. Regarding path characteristics (i.e.,

bandwidth, latency, and packet loss), we use values measured

against a content-server close to the radio infrastructure,

mimicking 5G edge deployments. In the static scenario, we

showcase multipath transport between 4G and 5G paths and

between 4G and WLAN paths as well as between 5G and

WLAN paths. Our motivation to evaluate all these options is

due to the proposed ATSSS architecture from 3GPP. In the

mobile scenario, we showcase multipath transport over two

5G networks in a driving scenario [42].

In the real-world experiments, we analyze multipath trans-

port between 5G and WLAN in the static scenario. In the

mobile scenario, we showcase multipath transport over 4G and

5G in a driving test.

VI. EMULATED EXPERIMENTS

In this section, we compare the performance of FALCON

with state-of-the-art multipath schedulers in a wide range of

emulated experiments. We use the bulk transfer case to analyze

the performance of the multipath schedulers in static and

mobile scenarios (Section VI-A), and provide more insights

on the behavior of FALCON and other schedulers in terms

of how quickly they adapt to time-varying network conditions

(Section VI-B). Finally, we further validate the robustness of

FALCON in web download scenarios (Section VI-C).

A. Performance in Static and Mobile Scenarios

We first evaluate the performance of different multipath

schedulers in static and mobile scenarios. We focus on

the analysis of schedulers based on learning while keeping

schedulers based on predefined rules as a reference. For the

schedulers based on learning with online approach (FALCON,

DQN-On, M-Peekaboo), we assume: (i) they were not trained

over the examined network conditions beforehand, and (ii)

they have no buffered online data at the beginning of each

experiment. On the other hand, to directly compare the impact

of an approach with offline pre-knowledge, we assume that

DQN-Off was trained over the examined network conditions

beforehand.

Figure 2 presents the performance of different schedulers

under different scenarios as described in Section V-D. For

the static case (Figure 2 a-c), we observe that all the sched-

ulers based on learning (FALCON, DQN-On, DQN-Off, M-

Peekaboo) outperform the schedulers based on predefined

rules (minRTT, BLEST) with up to 34.5% shorter median

download time. Concerning schedulers based on learning,

we observe that schedulers utilizing deep learning, including

FALCON, DQN-Off, and DQN-On, outperform M-Peekaboo
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(a) Static: 4G and 5G (b) Static: 4G and WLAN (c) Static: 5G and WLAN (d) Driving: 5G and 5G

Figure 2. Performance of FALCON and other multipath schedulers in the static and mobile network conditions over 4G, 5G, and WLAN.

(a) 4G and 5G (b) 4G and WLAN (c) 5G and WLAN

Figure 3. Convergence test of DQN-On in different configurations over 4G, 5G, and WLAN.

with up to 19.3% shorter median download time. As all the

schedulers adapt to the presented static network condition,

this indicates that applying a model of high complexity is

beneficial for improving the adaptation accuracy. We also

observe that the performance of FALCON is similar to DQN-

Off and clearly better than DQN-On. This indicates that

FALCON can adapt faster compared to DQN-On thanks to

its few-shot online learning, which allows to achieve the same

accuracy as DQN-Off.

Note that we assumed DQN-Off was trained over the exam-

ined network conditions beforehand and is able to deploy an

accurate model without the additional cost of online learning.

However, it is rarely the case that the online data is fully

and well-aligned with the offline data under realistic settings.

To capture this effect, we consider the scenario, where the

model obtained during training deviates from the current

network conditions by only a 5% decrease in terms of the RTT

variation and loss rate of the paths. We denote DQN-Off under

these new deviated network conditions as DQN-Off∗. We

observe that there is a significant performance drop of DQN-

Off∗ compared to DQN-Off with up to 34.5% longer median

download time. Its performance is similar to the schedulers

with pre-defined rules. This indicates that DQN-Off lacks the

ability to adapt, hence negatively impacting its practicality

under realistic settings.

Next, we evaluate the performance of FALCON and base-

line schedulers in a mobile scenario. We illustrate the per-

formance of different schedulers in the trace-driven mobile

network conditions in Figure 2(d). We observe that the per-

formance gain of M-Peekaboo over the schedulers based on

predefined rules decreases compared to that of the static case,

since it does not adapt fast enough to the less predictable

changes of network conditions. M-Peekaboo, however, outper-

forms DQN-On by an 18.9% shorter median download time,

since it has a more lightweight learning mechanism and, thus,

a shorter adaptation time. The adaptation time of DQN-On

is quite long because of the intrinsic slow convergence time

of DQN, which we investigate separately in Section VI-B1.

Thanks to the few-shot online learning, FALCON still clearly

outperforms the online learning based schedulers, reaching a

16% shorter median download time compared to M-Peekaboo.

DQN-Off performs slightly better than FALCON as it does not

have the cost of few-shot learning during frequent network

condition changes. However, when we introduce a model

deviation, as done for the static scenario, we observe again

that DQN-Off∗ performance drops significantly, since it lacks

the ability to adapt to the deviated network conditions.

B. A Closer Look into Adaptation Time

We now examine in depth the factors that impact the

adaptation time for the schedulers based on learning with

online adaptation, i.e, DQN-On, M-Peekaboo, and FALCON.

1) Convergence Test: We perform a convergence test to

explore the convergence behavior of DQN-On, M-Peekaboo,

and FALCON. We define the relative score as the ratio between

the median file download time obtained by DQN-Off and the

median file download time obtained by the scheduler under

test. We use the relative score to illustrate how online learning

algorithms evolve over time, thus, we evaluate this score as

a function of the online learning cost, i.e., the number of

online packets at the transport layer. For each scheduler, we

perform the test 10 times. For DQN-On, we also consider

the impact of buffered online data due to previous training.
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(a) 4G and 5G (b) 4G and WLAN (c) 5G and WLAN

Figure 4. Convergence test of FALCON and M-Peekaboo over 4G, 5G, and WLAN.

Therefore, we not only investigate the convergence of DQN-

On with zero buffered online data, i.e., no previous training,

(denoted by DQN-On(Z)) but also with a narrow vs. wide

range of buffered online data (denoted by DQN-On(N) and

DQN-On(W), respectively). In particular, DQN-On(N) was

trained beforehand over two network conditions that have,

compared to current network conditions, a 3% decrease or

a 3% increase of RTT variation and loss rate on the available

paths. DQN-On(W) was instead trained over four network

conditions having 3% and 6% decrease and increase of the

same indicators, respectively. The experience on the network

conditions is obtained by exploiting a learning budget of 100

packets exchanged under each of these conditions.

Figure 3 shows the results of the convergence test for DQN-

On with different amount of buffered online data. The number

of packets for reaching convergence is very different when

we compare DQN-On and FALCON / M-Peekaboo; therefore

we show the results of DQN-On in Figure 3 and the results

of FALCON / M-Peekaboo in Figure 4. We observe that

DQN-On requires a large amount of data to converge, in

the order of 100,000 packets. DQN-On(N) has a relatively

higher score at the beginning and shows earlier convergence

compared to DQN-On(W). This is due to two main reasons:

first, the network conditions it has trained over have a higher

similarity to the current network conditions; second, the total

number of packets in its learning budget is smaller (200 for

DQN-On(N) vs. 400 for DQN-On(W)), so in DQN-On(N) the

online data from current network conditions dominates faster

the buffered online data, ultimately speeding up adaptation.

Similarly, DQN-On(W) has a relatively higher score than

DQN-On(Z) at the beginning, due to the training beforehand,

but DQN-On(Z) converges earlier than DQN-On(W), since

it does not need to nullify the impact of buffered online

data deviating from current network conditions. The analysis

indicates that buffered online data that deviates from current

conditions may harm convergence. Note that we allocated a

small amount of online data that are relatively close to the

current network conditions (deviations are within 6%); In more

realistic settings, even more data with wider deviated ranges

could be buffered, leading to a continuous slow down of the

adaptation time of DQN-On.

Next, we illustrate the results of the convergence test for

M-Peekaboo and FALCON in Figure 4. We observe that

Figure 5. Stress test of FALCON, M-Peekaboo, and DQN-On.

Figure 6. Web download test of FALCON, M-Peekaboo, and minRTT.

FALCON and M-Peekaboo achieve convergence with an ap-

proximate learning cost of 600 and 6,000 packets, respectively.

These values are much smaller than that of DQN-On. Mean-

while, the paradigms of FALCON and M-Peekaboo are free

of the impact of the buffered online data. Further, we observe

that M-Peekaboo has a relatively fast convergence speed but

its relative score is lower than FALCON, due to its simpler

learning model. On the other hand, by combining offline and

online learning, FALCON not only converges faster but also

achieves a higher score compared to M-Peekaboo.

2) Stress Test: We also perform a stress test to examine

how fast and accurately FALCON, DQN-On, and M-Peekaboo

adapt to changing network conditions. In order to isolate the

impact of adaptation, none of the schedulers has buffered

online data beforehand. We define a change interval and,

under each change interval, we generate 24 different network



11

conditions where the characteristics of each path are randomly

generated in the range formed by the minimum and maximum

of the characteristics shown in Table II. At the end of each

change interval, we calculate the relative score of the multipath

scheduler using the approach presented in Section VI-B1.

Figure 5 shows the relative score of each multipath sched-

uler under the stress test with change intervals of 8.0, 4.0, 2.0,

0.5, and 0.3 seconds, respectively. We observe that DQN-On

already struggles when the change interval is 8.0 seconds, as

indicated by a relative score much less than 1. This is in line

with the results on the convergence behavior of DQN-On in

Section VI-B1. We also observe that M-Peekaboo struggles

with a change interval of 2 seconds, as indicated by the

drop of its relative score compared to the scores obtained

with change intervals of 8.0 and 4.0 seconds. We further

observe that FALCON performs very well up to a change

interval of 0.5 seconds. Then, it experiences a performance

drop when the change interval is equal to 0.3 seconds. When

both FALCON and M-Peekaboo can catch up with the change

of network conditions (e.g., the change interval of 4 seconds),

FALCON reaches a higher performance than M-Peekaboo. In

all cases, FALCON shows higher scores compared to all the

other schedulers, ultimately highlighting a significantly higher

both adaptation accuracy and speed.

C. Multi-streaming support for Web Services

In Sections VI-A and VI-B, we have examined the effective-

ness of FALCON for bulk transfer services. In this section, we

will examine the extensibility of FALCON for web services.

For the web experiments, we use the stream multiplexing

feature of MPQUIC, an important feature that is planned to

be exploited in HTTP/3. Therefore, we follow the approaches

in the existing literature for dealing with stream multiplexing,

and utilize a weighted round robin stream scheduling approach

to download webpage objects based on their position in the

dependency tree of the webpage [57], [58], [59]. More-

over, considering the multi-streaming feature of MPQUIC,

we plug in partially different contents within the framework

of FALCON for web download from that for bulk transfer.

Although both are subject to the same algorithm (i.e. single

streaming is a special case of multi-streaming), we denote

the one with multi-streaming support as FALCON-S and

FALCON for the one with single-streaming support, just to

ease the presentation in the experiment. There are two main

differences between FALCON and FALCON-S: 1) FALCON-

S takes the send windows of each object stream as the state

information while FALCON treats the send window as a whole

for the state information; 2) FALCON-S splits the congestion

window based on the weights of concurrent streams as the

state information for each stream while FALCON treats the

congestion window as a whole for the state information.

We perform the web experiment within the mobile scenario

as defined in Section VI-A, to better illustrate the algorithm’s

adaptation ability. Figure 6 shows the download time of min-

RTT, M-Peekaboo, FALCON, and FALCON-S for different

web pages. We observe that FALCON still has a clear perfor-

mance gain over the other multipath schedulers. Furthermore,

(a) Static: 5G and WLAN (b) Driving: 4G and 5G

Figure 7. Performance of FALCON and other multipath schedulers in real-
world static and mobile network conditions over 4G, 5G, and WLAN.

FALCON-S outperforms FALCON, reaching up to 13.6%

shorter download time. The results shows that it is possible

to use FALCON across different applications, indicating the

robustness of FALCON. Moreover, simple application-specific

tuning can be applied to FALCON, in order to customize it

for specific applications, eventually indicating the flexibility

of FALCON.

VII. REAL-WORLD EXPERIMENTS

We now present the evaluation of the schedulers in real-

world experiments in both static and mobile scenarios.

The static scenario is set up over 5G from a network

provider and WLAN, while the mobile scenario is set up

for a vehicle moving at a nearly constant speed of 30 km/h,

over 5G from the same network provider and 4G from a

different network provider. The evaluation is carried out in

the afternoon, while the data for creating the meta-models in

FALCON and for training DQN-Off is collected 5 days before

the evaluation, in the morning. We perform the evaluation over

5 consecutive days and, at the end of each day, FALCON

performs the offline update of the meta-models. To illustrate

the effect of the offline update, we also show the performance

of FALCON with no offline update, denoted FALCON-N (in

these settings, FALCON and FALCON-N are identical in the

first day of evaluation).

Figure 7 illustrates the performance of FALCON and other

multipath schedulers in real-world network conditions. We

note that in both static and mobile scenarios, the performance

of DQN-On is always lower compared to all schedulers, due

to the frequent retraining as the network conditions change.

While in the emulated environment, DQN-On can converge

(see Section VI-B1), in the real-world environment, even in

the static scenario, the state transitions are more frequent

due to the dynamicity of real networks. DQN-Off performs

consistently better than DQN-On and minRTT, but worse

than M-Peekaboo, FALCON, and FALCON-N, as it lacks the

ability to adapt online. Restricted by its adaptation time, M-

Peekaboo has worse performance in the mobile scenario than

in the static case. FALCON and FALCON-N outperform M-

Peekaboo with up to 23.6% and 18.7% shorter mean down-

load time, respectively. In particular, FALCON outperforms

FALCON-N, with a gain indicating that the effect of updating

the meta-models is incremental. To summarize, the results
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Figure 8. The impact of K on FALCON’s performance.

show a rather high generalizability of the meta-models learned

over the distribution of network conditions.

VIII. FALCON’S CONFIGURATION PARAMETERS AND

OVERHEAD

In this section, we study the impact of FALCON’s configu-

ration on the obtained performance (Section VIII-A). We then

discuss the overhead of FALCON (Section VIII-B).

A. A Study into FALCON’s Configuration

We study the impact of the configuration parameters adopted

for FALCON on the observed performance, e.g. adaptation

speed and accuracy. More specifically, we address the selection

of K and the number of meta-models, which are directly

related to FALCON operations.

1) Selection of K: We first study the selection of K and

its impact on adaptation speed and accuracy. Recall that K is

the number of online training steps to be performed for fine-

tuning the pre-built meta-models. We expect that for any given

network condition, the online model should converge within

K steps. Since we perform a mini-batch gradient descent with

the size of 32 for each step, the learning overhead in terms of

the number of packets becomes the number of steps multiplied

by the mini-batch size. Thus, we seek for the smallest value

of K that guarantees fast and accurate adaptation.

Figure 8 shows the performance of FALCON in terms of rel-

ative score as a function of K. We first observe that, when K
is relatively small, FALCON does not show significant gains.

This is because the meta-learning mechanism is struggling

to find meta-models that can converge within the K steps.

The performance saturates when K = 16, which is therefore

selected as the parameter adopted in FALCON.

2) Number of Meta-models: Next, we study the impact of

the number of meta-models we employ. Recall that, for a

combination of our defined range of link characteristics, we

train one meta-model to bootstrap. To obtain a higher amount

of meta-models over the defined range of link characteristics,

we divide each range into multiple sub-ranges (e.g., divide the

[0, 1)% range of loss rate into a number of sub-ranges) and

train one meta-model for each combination of sub-ranges.

Figure 9 shows the minimum value of K (as analyzed in

Section VIII-A1) as a function of the number of sub-ranges for

each range of link characteristics (the original one is 1). We

Figure 9. The impact of the number of sub-ranges (also, the number of
meta-models) on the optimal K.

observe that the value of K slowly decreases as we increase

the number of sub-ranges for each range. However, even if

the number is set to a relatively large number (e.g., 100),

the minimum K is still relatively large. Indeed, the meta-

model still requires a certain number of training steps before

converging to the optimal values.

In theory, when the number of sub-ranges (also, the number

of meta-models) is sufficiently high, i.e., offline and online

scenarios will converge, the minimum value of K will be

zero, meaning that there will be no need for online adaptation.

Nevertheless, this is not practical for the reasons we present in

Section III-A. Furthermore, FALCON requires the estimation

of current network conditions, in order to map such conditions

to one of the pre-built meta-models. The estimation error

can easily cause disturbance in selecting the meta-models if

the number of meta-models is too large. For this reason, we

keep the original number of meta-models for FALCON that is

practical and avoids the estimation errors with the satisfactory

performance and adaptation speed.

3) Discussion on Hyperparameter Selection: Learning

based systems cannot avoid the necessity to employ hyper-

parameters in their algorithms. The search for the hyperpa-

rameters to use is an optimization problem, which is often

solved heuristically in a trial-and-error manner. In extreme

cases, the trial-and-error process can be automated, and this is

known as automated machine learning [60]. In all cases, the

higher the complexity of the model and the task, the longer

the time per trial would be. Thus, this approach is normally

used with small-sized models and datasets so that the iterations

for optimization can be completed until a set of parameters is

found. Since FALCON is set up over a significant size of

models and data, this optimization approach is not feasible

for FALCON, just as for most of the other practical machine

learning systems that eventually employ intuitive hyperparam-

eters with human-in-the-loop manual optimization (tuning).

Therefore, as regards to DQN-related parameters, we adopt the

common parameters, since they already bring significant gains

for FALCON against other schedulers. We further observe

that the selection of these parameters is subject to machine

learning engineering aspects, and their optimization may result

in further improvements.
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(a) CPU Cost (b) Memory Cost

Figure 10. Overhead of FALCON and minRTT in the perspectives of CPU usage percentage and memory usage percentage.

B. System Overhead of FALCON

A deep learning system normally consists of a training

phase and an inference phase (i.e., the interpretation of the

neural network). For FALCON, the training phase is partially

completed offline and partially completed online along with

the inference phase; the inference phase is completed online.

The offline training phase is of higher system overhead but

free of impact on the deployment of FALCON, since it occurs

in an offline manner.

We perform an experimental analysis to investigate the

system overhead of FALCON in the online phase. We record

the central processing unit (CPU) usage and memory usage of

FALCON and minRTT over a 0.3 seconds period with a single

change of network conditions. The CPU of the server is Intel-

i5 (2.50 GHz) of two cores and the size of the memory of the

server is 8 GB. Figure 10 shows both the real time usage and

the average usage of FALCON and minRTT. First, we observe

that the average CPU usage of FALCON is only 3% higher

than minRTT and the memory usage of FALCON is on average

only 6% higher than minRTT. Recalling that we have a change

of network conditions within the analyzed time frame of 0.3

seconds, i.e., the worst-case scenario where FALCON can be

used, the CPU and memory usage gaps between FALCON

and minRTT are likely to be even smaller when the network

conditions change less frequently. Thus, overall FALCON

does not bring significant system overhead. For the real time

usage, we do observe a significant spike in terms of CPU and

memory usage. This spike happens when FALCON performs

the online training with the gradient calculation. However,

we do not observe any extra system overhead in the online

inference phase, because FALCON utilizes a neural network

model with a relatively simple architecture and thus with low

computational complexity. Lastly, FALCON is deployed in the

server in the context of this paper, thus the extra CPU and

memory costs are not as significant issues as they would be

on the client device.

However, we do not limit the applicable scenarios of FAL-

CON to server side deployment. A path selection on the client

side can also employ FALCON. In such a context, the client

would be a mobile device, constrained by power consumption.

For the online inference side, as mentioned above, FALCON

and other schedulers should hold similar power consumption,

as inferred from the similar CPU and memory utilization.

Considering a scenario where FALCON might employ a

Neural Network (NN) model of higher complexity, and thus

larger inference overhead, embedded software and hardware

solutions such as ARM Common Microcontroller Software

Interface Standard (CMSIS) NN software library [61], Field-

Programmable Gate Array (FPGA), and Graphics Processing

Unit (GPU), can make the inference more efficient.

IX. DISCUSSION AND CONCLUSION

Learning-based networking systems have received much

attention of late, as well intriguing the field of multipath

scheduling. However, the deployment of existing learning-

based multipath schedulers fails to be functional in the aspects

of achieving a fast and accurate adaptation.
In this paper, we propose FALCON, a learning-based mul-

tipath scheduler that can adapt fast and accurately to time-

varying network conditions by combining the benefits of

online and offline learning. Through extensive emulations, we

show that FALCON is able to consistently outperform all state-

of-the-art schedulers by adapting to the network conditions in a

fast and accurate manner. Our real-world experiments confirm

that FALCON performs well also under realistic network

settings.
We see two main future directions for this work. Firstly, in

this paper, we have demonstrated the possibility of applying

DQN within FALCON, but we will also consider applying

other deep learning approaches to enhance the performance

of FALCON. Secondly, we plan to interpret and understand

the learning outcome of FALCON (i.e., in the form of NN) to

potentially deduce the guaranteed performance bound.
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Özgü Alay Dr. Ozgu Alay received the B.S. and
M.S. degrees in Electrical and Electronic Engineer-
ing from Middle East Technical University, Turkey,
and Ph.D. degree in Electrical and Computer En-
gineering at Tandon School of Engineering at New
York University. Currently, she is an Associate Pro-
fessor in University of Oslo, Norway and Head
of Department at Mobile Systems and Analytics
(MOSAIC) of Simula Metropolitan, Norway. Her re-
search interests lie in the areas of mobile broadband
networks, multipath protocols and robust multimedia

transmission over wireless networks. She is author of more than 70 peer-
reviewed IEEE and ACM publications and she actively serves on technical
boards of major conferences and journals.

Anna Brunstrom received a B.Sc. in Computer Sci-
ence and Mathematics from Pepperdine University,
CA, in 1991, and a M.Sc. and Ph.D. in Computer
Science from College of William & Mary, VA, in
1993 and 1996, respectively. She joined the Depart-
ment of Computer Science at Karlstad University,
Sweden, in 1996, where she is currently a Full
Professor and Research Manager for the Distributed
Systems and Communications Research Group. Her
research interests include Internet architectures and
protocols, techniques for low latency Internet com-

munication, multi-path communication and performance evaluation of mobile
broadband systems including 5G. She has authored/coauthored over 170
international peer-reviewed journal and conference papers.

Giuseppe Caso is an Experienced Researcher at
Ericsson Research (Radio Systems and Standards) in
Kista, Sweden. In 2018-2021, he was a Postdoctoral
Fellow with the MOSAIC Department at SimulaMet,
Oslo, Norway. In 2016, he received the Ph.D. degree
from Sapienza University of Rome, where he was a
Postdoctoral Fellow until 2018. From 2012 to 2018,
he has held visiting positions at Leibniz Univer-
sity of Hannover, King’s College London, Technical
University of Berlin, and Karlstad University. His
research interests include cognitive and distributed

communications, resource allocation in cellular systems, IoT technology and
evolution, and location-based services. He is an IEEE Member.

Simone Ferlin is a software researcher at Erics-
son AB in radio networks. She received her Dipl.-
Ing. degree in Information Technology with major
in Telecommunications from Friedrich-Alexander
Erlangen-Nuernberg University, Germany in 2010
and her PhD degree in computer science from the
University of Oslo, Norway in 2017. Her interests
lie in the intersection of cellular networks and the
Internet, with her research focusing on computer
networking, QoS and cross-layer design, transport
protocols, congestion control, network performance,

security, and measurements. Her dissertation focused on improving robustness
in multipath transport for heterogeneous networks with MPTCP. She actively
serves on technical boards of major conferences and journals in these areas.




	Acknowledgements
	Abstract
	Sammendrag
	Table of Contents
	List of Articles
	1 Introduction
	1.1 Scope
	1.2 Objective
	1.3 Structure

	2 Background
	2.1 Bird’s-Eye View of 5G
	2.2 Multi-connectivity in 5G
	2.3 Multipath Transport Protocol

	3 Main Challenges
	4 Research Methodology
	5 Related Work and Research Contributions
	5.1 Employing Multipath Transport in 5G
	5.2 Scheduling based on Fixed Rules
	5.3 Scheduling based on Learning

	6 Summary
	6.1 Conclusions
	6.2 Limitations and Future work

	Bibliography
	Skilleark.pdf
	Blank Page
	Blank Page

	Blank Page



