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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of Philosophiae

Doctor at the University of OsloMet - Oslo Metropolitan University. The research pre-

sented here was conducted at OsloMet Artificial Intelligence (AI) Lab as well as the

Experimental Studies of Complex Human Behaviour (ESCo HuB) Lab, under the super-

vision of Prof. Anis Yazidi (main supervisor), Prof. Erik Arntzen, and Prof. Hugo L.

Hammer.

The thesis is a collection of four theoretical papers, the common theme of which is

computational explanations of behavioral processes with a focus on developing tools for

the study of human behavior in simple yet powerful computational simulations. The

papers are preceded by an introductory chapter that bonds them together and provides

background information and motivation for the work. The candidate is the first author

and corresponding author for the first three papers, and the second author with equal

contribution with professor Anis Yazidi for the last paper. This work was supported by

the OsloMet through grant number 160139.
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“The purpose of (scientific) computing is insight, not numbers.”

Richard Hamming



Abstract

In this thesis, two well studied subjects in behavior analysis are computationally modeled;

formation of stimulus equivalence classes, and adaptive learning. The former is addressed

in Study I and Study II, while the latter is addressed in Study III and Study IV.

Background. Stimulus equivalence as a behavioral analytic approach studies cognitive

skills such as memory and learning. Despite its importance in experimental studies, from

a computational modelling point of view, the formation of stimulus equivalence classes

has largely been under-investigated. On the other hand, adaptive learning in a broad

sense, is a tool to study several cognitive tasks including memory and remembering. An

appropriate model can be used as a cognitive level finder, and as a recommendation tool

to optimize the training and learning sequence of tasks.

Aims. To propose computational models that replicate formation of stimulus equiva-

lence classes and adaptive learning. The models are supposed to be simple, flexible and

interpretable in order to be suitable for analysis of human complex behavior.

Methods. Agents endowed with Reinforcement learning, more precisely Projective Sim-

ulation and Stochastic Point Location, are used to model the interaction between exper-

imenter and the participant through the testing/learning process. Formation of derived

relations in Study I is achieved by on demand computation during the test phase trials

using likelihood reasoning. In Study II, subsequent to the training phase, an iterative dif-

fusion process called Network Enhancement is used to form derived relations, which turns

the test phase into a memory retrieval phase. The solution to Stochastic Point Location

in Study III aims to estimate the tolerable task difficulty level in an online and interactive

settings. In Study IV, the appropriate task difficulty for training and learning is sought by

using a target success rate that is usually defined beforehand by the experimenter using

a method called Balanced Difficulty Task Finder.

Results. The proposed models for replication of equivalence relations, called Equiva-

lence Projective Simulation (Study I) and Enhanced Equivalence Projective Simulation

(Study II) could replicate a variety of settings in a matching-to-sample procedure. The

models are quite flexible and appropriate to replicate results from real experiments and

simulate different scenarios before performing an empirical experiment involving human

subjects. In Study III, we suggest a new method to estimate the unknown point location

in the Stochastic Point Location problem domain using the mutual probability flux con-



cept and we prove that the proposed solution outperforms the legacy solution reported

in the literature. The probability of receiving correct response from the participant is

also estimated as a measure of reliability of participant’s performance. In Study IV, we

propose a model that is able to suggest a manageable difficulty level to a learner based

on online feedback via an asymmetric adjustment technique of difficulty.

Discussion. We aimed for models that are flexible, interpretative without a need of ex-

tensive pre-training of the model. By resorting to the theory of Projective Simulation, we

propose an interpretable simulator for equivalence relations that enjoys the advantage of

being easy to configure. By virtue of the Stochastic Point Location model, it is possible to

eliminate the need for prior-knowledge about the participant while also avoiding complex

modelling techniques. Although not pursued in this thesis, those two lines of modelling

could be used in a complementary setting. For instance, adaptive learning can be inte-

grated in the training phase of matching-to-sample or titrated delayed matching-to-sample

procedures as suggested in Study IV.

K eywords: human complex behavior, learning and memory, stimulus equivalence

classes, arbitrary matching-to-sample, titrated delayed matching-to-sample, artificial in-

telligence, reinforcement learning, adaptive learning, stochastic point location



Sammendrag

I denne oppgaven er velstuderte emner i atferdsanalyse modellert ved bruk av beregn-

ingsmodeller; formasjon av stimulusekvivalensklasser, og adaptiv læring. Det første er

diskutert i Studie I og Studie II, og det andre i Studie III og Studie IV.

Bakgrunn. Stimulusekvivalens som en atferdsanalytisk tilnærming studerer kognitive

ferdigheter som hukommelse og læring. Til tross for sin viktighet i eksperimentelle studier

sett fra beregnings og modelleringsperspektivet, har formasjonen av stimulusekvivalen-

sklasser i hovedsakelig vært lite forsket p̊a. P̊a en annen side, adaptiv læring, i vid

forstand, er et verktøy for å studere flere kognitive funksjoner, inkludert hukommelse og

evne til å huske. En passende modell kan brukes for å finne kognitivt niv̊a, og som et

anbefalingsverktøy for optimalisering av oppgaverssekvenser for trening og læring.

Mål. Å foresl̊a beregningsmodeller som er i stand til å replisere formasjon av stimulusek-

vivalensklasser og adaptiv læring. Modellene forventes å være enkle, fleksible og tolkbare

for å være godt egnet til analysering av menneskelig komplisert atferd.

Metoder. Agenter utstyrt med forsterkende læring, mer presist projektiv simulering og

stokastisk punktlokalisering, er brukt til å modellere samhandling mellom eksperimenta-

tor og forsøkspersonen gjennom en prøving og læringsprosess. Formasjonen av deriverte

relasjoner i Studie I er oppn̊add ved behovsbasert beregning under prøveforsøksfasen

ved bruk av sannsynlighetsresonnementer. I Studie II, etter treningsfasen, en iterative

diffusjonsprosess kalt nettverkforbedring er brukt til å danne deriverte relasjoner, som

omgjør testfasen til en fase for gjenvinning av hukommelse. Stokastisk punktlokalisering

i Studie III tar sikte p̊a vurdering av passende vanskelighetsniv̊a i et interaktivt miljø

i reell tid. I Studie IV, søkes passende vanskelighetsgrad p̊a oppgavene ved prøving og

læring ved å bruke en viss suksessrate og som vanligvis er definert av eksperimentatoren

p̊a forh̊and ved bruk av en metode kalt Balanced Difficulty Task Finder.

Resultater. Foresl̊atte modeller for replikasjoner av ekvivalensrelasjoner, som kalles

ekvivalens projektiv simulering (Studie I) og forbedret ekvivalens projektiv simulering

(Studie II) kan replikere en rekke ulike matching-to-sample-prosedyrer. Modellene er helt

fleksible og passende for å replikere resultater fra ekte eksperimenter og simulere ulike

scenarioer før gjennomføring av empiriske eksperimenter med mennesker. I Studie III,

foresl̊ar vi en ny metode for å vurdere den ukjent posisjonen i stokastisk punktlokaliserings

problemdomen ved bruk av konseptet kalt mutual probability flux og vi beviser at v̊ar



foresl̊atte løsning utkonkurrerer andre løsninger rapportert i litteraturen. Sannsynligheten

for å f̊a korrekte responser fra forsøkspersonen er ogs̊a vurdert som et p̊alitelighetsmål

til forsøkspersonens gjennomføring. I Studie IV, foresl̊ar vi en modell som anbefaler

et passende vanskelighetsniv̊a for en bruker basert p̊a umiddelbare tilbakemeldingen og

justering av vanskelighetsgrad gjennom en teknikk kalt asymmetric adjustment.

Diskusjon. V̊art mål var å lage modeller som er fleksible, fortolkende uten behov for

forh̊andstrening av modellen. Ved bruk av projektiv simuleringteori, foresl̊ar vi en tolkn-

ingsmulig simulator for ekvivalensrelasjoner som i tillegg enkelt kan konfigureres. Ved

å bruke Stokastisk punktlokaliseringsmodellen elimineres behovet for tidligere kunnskap

om forsøkspersonen og samtidig unng̊as behovet for kompleks modellering. Selv om at

det er ikke fulgt i denne oppgaven, kan disse to retningene for modellering bli brukt i et

kompletterende miljø. For eksempel, adaptiv læring kunne bli innlemmet i treningsfasen

av matching-to-sample eller titrert forsinket matching-to-sample-prosedyrer, og som er

foresl̊att i Studie IV.

N økkelord: kompleks menneskelig atferd, læring og hukommelse, stimulusekvivalen-

sklasser, arbitrær matching-to-sample, titrert forsinket matching-to-sample, kunstig in-

telligens, adaptiv læring, stokastisk punktlokalisering
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Thesis at a glance. Two main objective of this thesis were to computationally model
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Introduction

The study of human behavior and cognition is a complex cross-disciplinary field of research

involving various disciplines which include mainly philosophy, psychology, neuroscience,

computer science, anthropology, and linguistics. Understanding the learning and memory

mechanisms is essential in the effort to understand human cognition. In brief, learning can

be understood as a process of acquiring or modifying knowledge and behaviors based on

previous interactions over time. Memory is a firmly related concept where the previously

learned information is maintained and available to be applied (see, Clark, 2017, for a basic

history of research on the phenomenon of learning and memory).

Among scientific disciplines whereby human complex behaviors are addressed, behav-

ior analysis science has its own approach

...most philosophers (and psychologists) treat cognition as a phenomenon that

is built into the psyche and they ask questions about its role in such other

phenomena as perception, communication, reasoning, intellectual activities,

and so on. Behavior analysts, however, treat cognition as a name that sum-

marizes a set of activities, mostly learned. Instead of accepting cognition as a

built-in phenomenon, they do experiments that demonstrate how to teach the

activities that constitute cognition. From the point of view that we ourselves

construct cognition by means of specifiable operations, any philosophical treat-

ment of cognition requires an understanding of those operations, that is to say,

of how the construction of cognition is designed. (Sidman, 2010, p. 143)

In other words, behavior analysis treats cognition in terms of observable behaviors and

activities that are mostly learnt and not built-in in the brain.

Computational models of psychological processes such as connectionist models are of-

ten used for modeling human perception, cognition, and behavior, as well as the learning
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processes underlying the behavior, and the storage and retrieval from memory (see Mc-

Clelland, 1988, for instance). Modeling, in a general term, can render vague and complex

ideas reachable, explicit, and precise enough such that their implications become clear.

...the usefulness of a model is not simply a matter of its correctness... models of

complex processes should be taken as tools that help us understand the impli-

cations of possible assumptions that might be made about the characteristics

of information-processing systems. (McClelland, 1988, p. 114)

Therefore, a model might be considered as a theory describing a real-life phenomenon

which can be used to gain insights, build hypotheses and make predictions in empirical

research. Mathematical psychology, which dates to 1950s, is an important branch and

pillar in psychological theory such as learning, memory, classification, choice response

time, decision making, attention, and problem solving (see, Busemeyer, Wang, Townsend,

& Eidels, 2015). Since mathematical psychology can be used in theory construction, many

areas of cognitive and experimental psychology are built on formal mathematical models

and theories (Batchelder, 2010).

Artificial Intelligence (AI), although is considered as a field of research in its own right,

could enrich the landscape of mathematical psychology methods as AI is concerned with

the design of algorithms that mimic human natural intelligence. A definition of AI due

to Bellman is:

The automation of activities that we associate with human thinking, activities

such as decision-making, problem solving and learning (Bellman, 1978).

Due to great advancement in AI, machine learning, and reinforcement learning, any

effort to study mutual lessons of human brain and AI is worthy.

In order to conduct research in learning and memory, in this thesis two well-studied

subjects in behavior analysis are modeled using AI algorithms; formation of stimulus

equivalence classes, and adaptive learning in the face of different task difficulty levels that

can model the learning experience of a learner.

Sidman (1971) identified and explored the stimulus equivalence phenomenon, the term

which was co-opted from earlier scientists (e.g, Hull, 1939; Klüver, 1933; Tolman, 1938).

Equivalence relations was originally used to study teaching methodologies for children
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and adults with developmental disabilities like autism spectrum disorder and Down syn-

drome (e.g., Arntzen, Halstadtro, Bjerke, & Halstadtro, 2010; Sidman, Cresson Jr, &

Willson-Morris, 1974). Seen from a broader perspective, equivalence relations is an im-

portant research topic worthy of great attention due to its role in language, creativity and

inductive inference (Sidman, 2018).

Many cognitive tasks that address remembering and learning, deal with the adjustment

between task difficulty and the cognitive level of the task taker. The cognitive level of a

participant is important both in studying memory problems, and in designing a sequence

of training tasks with suitable difficulty level. For instance, titrated delayed matching-

to-sample (TDMTS) method and Spaced Retrieval Training (SRT) (Camp, Gilmore, &

Whitehouse, 1989), can be used respectively to study important variables for analyzing

short-term memory problems (Arntzen & Steingrimsdottir, 2014a), and to learn and re-

tain target information by recalling that information over increasingly longer intervals;

a method which is especially used for people with dementia (Camp, Foss, O’Hanlon, &

Stevens, 1996). Although testing and learning by practicing have different aims, by adap-

tive learning, we refer to a wide range of methods where the participant’s performance is

central in designing the training or testing procedures.

Despite the fact there are several computational models for both the formation of

stimulus equivalence classes, and adaptive learning, in this thesis, reinforcement learning

is chosen as the ground for modeling due to the interactive nature of the problems in hand.

Even though there are other modeling methods that could have been used in this thesis

from the realm of AI, we deliberately choose not to adopt them in this thesis because of

the importance of interpretability of models in psychology which makes other black-box

AI models inappropriate.

In Study I a novel instance of Projective Simulation (Briegel & De las Cuevas, 2012)

which we called Equivalence Projective Simulation (EPS) is proposed for modeling equiv-

alence relations. This model is further enhanced by applying a network enhancement

method (Wang et al., 2018) in Study II which we refer to as Enhanced Equivalence

Projective Simulation (E-EPS) model. These models successfully simulate the results of

some well-known studies in the stimulus equivalence literature. To address the adap-

tive learning aspect, in Study III, we provide a method by which we can search for the

difficulty level that a participant can manage based on his previous performance. This
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method can propose the most appropriate sequence of tasks for either testing or learning.

The proposed search algorithm is based on modeling our problem as an instance of the

Stochastic Point Location (SPL) problem (Oommen, 1997). A method to estimate and

track the probability of receiving correct response from the participant in tandem with

the estimation of tolerable task difficulty level is proposed in Study III. In Study IV,

the focus is more on training and learning, and therefore we consider motivational tests

fitting the capabilities of the participants in line with the efficiency of the length of the

test. The idea of Study IV is closely related to the state of “Flow” in psychology and

“balanced-difficulty” in game design.

In the rest of this comprehensive introduction, the importance of equivalence relations,

theoretical accounts and parameters in formation of equivalence classes are addressed

first. Then, the role of adaptive learning in cognitive tasks and the related concepts from

mathematical psychology and psychometrics are discussed. Some essential background

information about Artificial Intelligence, computational models in psychology and their

role in psychology research, together with the known connectionist models are provided to

make the thesis self-contained. The underlying reinforcement learning methods on which

we base our model are provided afterwards. The Network Enhancement diffusion based

model that is used in Study II is presented before Related works section where we briefly

survey the prior models of equivalence relations and adaptive learning. At the end, a

summary of the four studies in this thesis is provided and discussed.

On Stimulus Equivalence

The problem of equality (or of equivalents, as it has been called) is precisely the

problem of finding alternative stimulus configurations for which some attribute

of a response remains invariant. This problem shows up in many forms and in

many fields of inquiry. As a matter of fact, an inventory would probably show

it to be one of the commonest problems tackled by psychologists. (Stevens,

1951, p. 36)

The focus of Sidman (1971) seminal study was on teaching reading comprehension to

a young man with intellectual disability. This seminal study made stimulus equivalence

prominent in behavior analysis research for about 50 years (e.g, Arntzen, 2012; Critchfield,
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Barnes-Holmes, & Dougher, 2018). In general, stimuli are in an equivalence relation in

the sense that they evoke the same behavioral response. Derived stimulus relations are

the new relations that can be deduced from explicitly taught relations and could address

aspects of learning that have been characterized as creative or generative.

Sidman and Tailby (1982) later formalized stimulus equivalence through relations in

mathematical equivalence sets i.e. the relations between stimuli possess the properties of

reflexivity (A = A), symmetry (if A = B then B = A), and transitivity (if A = B and

B = C, then A = C).

Stimulus equivalence framework as an efficient learning method benefits children and

adults with developmental disabilities such as autism spectrum disorder (Arntzen, Hal-

stadtro, Bjerke, & Halstadtro, 2010; Arntzen, Halstadtro, Bjerke, Wittner, & Kristiansen,

2014; Groskreutz, Karsina, Miguel, & Groskreutz, 2010; McLay, Sutherland, Church, &

Tyler-Merrick, 2013; Ortega & Lovett, 2018), Down syndrome (Sidman et al., 1974), and

children with degenerative visual impairments (Toussaint & Tiger, 2010). Equivalence re-

lations have also been used in teaching new concepts to children (Sidman, Willson-Morris,

& Kirk, 1986), young people and adults without developmental disabilities (Arntzen & Eil-

ertsen, 2020; Saunders, Chaney, & Marquis, 2005), and college students (Fienup, Covey,

& Critchfield, 2010; Fienup, Wright, & Fields, 2015; Grisante et al., 2013; Hove, 2003;

Lovett, Rehfeldt, Garcia, & Dunning, 2011; Placeres, 2014; Walker, Rehfeldt, & Nin-

ness, 2010). Neurocognitive disorders, such as Alzheimer’s disease, is one another target

research area in equivalence relation studies. For instance, it has been discussed that

derived relational responding is deteriorated as the cognitive impairment advances over

time (Arntzen & Steingrimsdottir, 2017; Arntzen & Steingrimsdottir, 2014b; Arntzen,

Steingrimsdottir, & Brog̊ard-Antonsen, 2013; Bódi, Csibri, Myers, Gluck, & Kéri, 2009;

Brog̊ard-Antonsen & Arntzen, 2019, 2; Ducatti & Schmidt, 2016; Gallagher & Keenan,

2009; Seefeldt, 2015; Sidman, 2013; Steingrimsdottir & Arntzen, 2011).

The study by Sidman (1971) is not only a major landmark in the experimental analysis

of human behavior, but also in the analysis of language and cognition. Figure 1 represents

some of the topics and research related to stimulus relations reported by Critchfield et al.

(2018). In the following I review the areas of research most relevant for the topic of this

thesis, including equivalence relations and different theoretical accounts for equivalence

classes, parameters in the formation of stimulus equivalence, training procedures and
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structures.

non-equivalence
(opposite	to,

different	from,
etc.)

stimulus
relation 

equivalencesemantic
network

concept	or
category

approximate	
synonyms

useful	for

basic	research
-	to	explain	stimulus	relations
-	to	expand	general	behavior	theory
-	to	analyse	language	and	cognition 
-	to	connect	with	mainstream	scholars
-	to	learn	what	is	"uniquely	human"
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theoretical	explanation

traditional	account

-	neural	mediation
-	cognitive	mediation

behavior	science
-	Sidman
-	Relational	Frame	Theory
-	Naming	Theory

application
-	translational	models
-	"free	learning"	interventions
(autism,	academic)

-	consumer	&	organisational	issues

-	clinical	interventions	(ACT)

Figure 1: A summary of how the concept of “stimulus relations” emerges in different
research areas based on the concept map provided by Critchfield, Barnes-Holmes, and
Dougher (2018).

Equivalence Relations in Real Life

It is fair to claim that the most important role of equivalence relations is making language

such a powerful factor in human social life by using words and other symbols. As a

matter of fact, words have meanings and the type of word meaning is a symbolic reference

according to which the word refers to another thing or event. Sidman (2018), for example,

describes this kind of symbolic reference in this way:

...one of the most fascinating observations is that we often react to words and

other symbols as if they are the things or events they refer to. Even though we

do not treat word and referent as equal in all respects, we attribute some of the

same properties to both. This treatment of linguistic forms as equivalent to

their referents permits us to listen and read with comprehension, to work out
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problems in their absence, to instruct others by means of speech or text, to plan

ahead, to store information for use in the future, and to think abstractly–all

of these by means of words that are spoken, written, or thought in the absence

of the things and events they refer to. (Sidman, 2018, p. 34)

The substitution of words and other symbols with their referents may generate strange

behavior though. Words, for instance, are not able to produce direct damage or hurt; but

deeply integrating of words with what they refer to transform them to hurtful tools which

can be used to inflict pain.

In fact, words are considered to be hurtful. Witness what has now become

commonplace in our daily news: first, killings after the receipt of actual or

imagined verbal insults and, second, such killings then being justified even in

the courtroom as self-defense. (Sidman, 2018, p. 35)

Examples of treating linguistic forms and nonverbal symbols as equivalent to their

referents in reality abound (e.g, Sidman, 1994, 2018).

Equivalence relations by definition require the emergence of new relations from a

baseline of explicitly arranged relations. This shows the incredible efficiency of the exper-

imental paradigm as a method of teaching and a potential contribution of the equivalence

research to instructional technology (for some instances of this efficiency in teaching and

education, see Fienup et al., 2010; Lovett et al., 2011; Placeres, 2014; Saunders et al.,

2005; Walker et al., 2010). Indeed, an equivalence class composed of m stimuli, requires

only (m−1) stimulus-stimulus pairs to be trained and (m−1)2 relations will emerge (e.g,

Arntzen, 1999, 2012). Given that each component of class is used in at least one trained

relation, and further none of the trained relations can have the same two stimuli as com-

ponents1. There exist many possible ways for designing training procedures, some of them

might be more efficient than the others (Arntzen, Grondahl, & Eilifsen, 2010; Arntzen &

Hansen, 2011; Arntzen & Holth, 1997; Fields, Adams, Verhave, & Newman, 1990; Fienup

et al., 2015; Hove, 2003; Lyddy & Barnes-Holmes, 2007; O’Mara, 1991).

1The calculation is intuitive. If a class has m members, then there are m(m−1) bidirectional relations
between class members. By reducing the baseline relations we have m(m−1)−(m−1) = (m−1)2. These
values are just multiplied by c (the number of classes), to have the total number of training and emergent
relations in a setting; i.e. c(m − 1) baseline relations results into c(m − 1)2 derived relations (Arntzen,
1999, 2010).
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The emergence of new behavior which is captured in equivalence classes, is also a defin-

ing feature of creativity. The creative process is largely considered as an unapproachable

phenomenon and clearly, creativity entails more than only equivalence relations. However,

due to the fact that equivalence relations can underlie creative acts, better understand-

ing of equivalence relations results into better understanding creativity. Sidman (2018)

identifies the creativity from equivalence relations point of view as follows:

To the extent that we can say, “Teach a person that A is related to B, and

B to C, and then, without further teaching, you will find the person relating

C to A, A to C, B to A, and C to A,” we are predicting acts of creativity

from a set of specified circumstances. This is exactly what has happened over

and over in the research on equivalence. In the very process of testing for

equivalence relations, we see creativity being displayed even by people who

have been classified as nonlearners. The more we find out about equivalence

relations, the better we will understand and thereby become able to generate

desirable creative performances. (Sidman, 2018, p. 41-42)

In other words, research on equivalence and the testing phase that underlie the emer-

gence of untaught behavior is a tangible approach to study and understand some aspects

of creativity.

Different Theoretical Accounts of Stimulus Equivalence

In order to explain stimulus equivalence, there have been three main theories in behavior

analysis literature; Sidman’s theory (e.g, Sidman, 1994), naming theory (e.g, Horne &

Lowe, 1996), and Relational Frame Theory (e.g, Hayes, 1994). These different theoretical

accounts show that the stimulus equivalence phenomenon is not completely understood

yet and there is still room for further investigations. A major difference between Sidman

(1994) and the other theories is that Sidman considers establishing equivalence relation-

ships as a basic behavioral process, while both Hayes (1991) and Horne and Lowe (1996)

have tried to specify the historical conditions that give rise to responding derived rela-

tions. To explain how stimulus equivalence emerged, much of the legacy research focused

on identifying the naming of the stimuli.

We identify naming as the basic unit of verbal behavior, describe the condi-
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tions under which it is learned, and outline its crucial role in the development

of stimulus classes and, hence, of symbolic behavior. (Horne & Lowe, 1996,

p. 185)

While Horne and Lowe (1996) emphasize on naming as the mediator for equivalence

formation, Sidman has repeatedly stated that equivalence relations cannot be derived

from more basic principles and, therefore, they are taken for granted:

An equivalence relation, therefore, has no existence as a thing; it is not actually

established, formed, or created. It does not exist, either in theory or in reality.

It is defined by the emergence of new - and predictable - analytic units of

behavior from previously demonstrated units. (Sidman, 1994, pp. 388-389)

The Relational Frame Theory (RFT) account of stimulus equivalence has been devel-

oped by Hayes (1991, 1994), Hayes, Barnes-Holmes, and Roche (2001). The history of

reinforcement for bidirectional responding across multiple-exemplar training is the main

focus in RFT (Hayes et al., 2001). Clayton and Hayes (1999) explain the main difference

between RFT and Sidman’s understanding of stimulus equivalence in this way:

Unlike the position of Sidman (1994), in which stimulus equivalence is re-

duced to a basic stimulus function, RFT explains equivalence as the result of

prolonged exposure to the contingencies of reinforcement operating within a

verbal community. (Clayton & Hayes, 1999, p. 150)

Besides an account for formation of stimulus equivalence classes, RFT is a psychological

theory of human language which is built upon equivalence theory (Hayes, 1991, 1994;

Hayes et al., 2001). Details of RFT as well as comparison of the three accounts is discussed

by Clayton and Hayes (1999).

Parameters in Formation of Stimulus Equivalence

The detailed design of the experiment is essential to assess the validity of the results of the

experiment and evaluate the significance of data (Sidman, 2010). Some of the variables

that influence equivalence class formation are addressed below.
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Type of Stimuli

Type of stimuli is one of variables that influence the formation of equivalence classes and

can increase yields on equivalence tests; which means the ratio of participants who meet

criteria for equivalence class formation (see, Arntzen & Mensah, 2020, and references

therein). Effect of stimuli type in the formation of equivalence classes is well explored in

many research studies including use of pronounceable nonsense syllable (consonant-vowel-

consonant (CVC) trigrams, Lyddy, Barnes-Holmes, & Hampson, 2000), familiar color-

form compounds (Smeets & Barnes-Holmes, 2005), nameable stimuli (Bentall, Dickins,

& Fox, 1993), pronounceable stimuli (Mandell & Sheen, 1994), rhyming stimuli (Randell

& Remington, 2006), and meaningful pictures in both children and adults (Arntzen,

2004; Arntzen & Lian, 2010; Arntzen & Lunde Nikolaisen, 2011; Holth & Arntzen, 1998;

O’Connor, Rafferty, Barnes-Holmes, & Barnes-Holmes, 2009). Moreover, including famil-

iar color pictures to the stimuli of a class has been recently studied to model meaning-

fulness in a laboratory setting (e.g., Arntzen & Mensah, 2020; Arntzen & Nartey, 2018;

Arntzen, Nartey, & Fields, 2014, 2015, 2018a, 2018b; Fields & Arntzen, 2018; Fields,

Arntzen, Nartey, & Eilifsen, 2012; Mensah & Arntzen, 2017; Nartey, Arntzen, & Fields,

2014, 2015a, 2015b; Nedelcu, Fields, & Arntzen, 2015; Travis, Fields, & Arntzen, 2014).

Training Procedure

The minimum prerequisites for studying formation of equivalence classes are first, to have

two trained relations with one common element (explained later as node), and second

to test for emergence of reflexivity, symmetry and transitivity relations (Sidman, 1994;

Sidman & Tailby, 1982).

Matching-to-sample (MTS) procedure is the traditional, useful and powerful method-

ology for studying derived stimulus relations (e.g, Sidman, 1994). In the MTS process, a

given stimulus, say A1, is matched with B1 among a set of comparison stimuli, say B1,

B2, and B3. The discrimination is based on programmed consequence, and not because of

perceptual resemblance between the matched stimuli. Arbitrary MTS means there is no

conceptual relation between members of an equivalence class. An example of an arbitrary

MTS is depicted in Figure 2. When the matching criteria are arbitrary, usually the pro-

cedural term, conditional discriminations, is used. This arbitrary match between stimuli,

is the key aspect to study the emergence of equivalence relations that are not matched
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directly (Sidman, 2009). The MTS procedure has two phases, the training phase where

baseline relations are trained and the testing phase where derived relations are tested.

Response to 
sample stimulus

Incorrect 
Choice

Correct
Choice

Incorrect
Choice

Inter Trial
Interval

A1

B1B3 B2

Programmed Consequences

Figure 2: Example of an arbitrary MTS training trial. The discrimination is based
on programmed consequence, and not because of resemblance between the sample and
comparison stimuli (figure is based on an example by Arntzen & Steingrimsdottir, 2014b).

There have been some variations on standard MTS. For instance, complex or com-

pound stimuli have been used in identity and arbitrary MTS (e.g, Braaten & Arntzen,

2019; Markham & Dougher, 1993; Schenk, 1995; Smeets, Schenk, & Barnes, 1995).

The go/no-go task is another procedure that could be used to train and test for equiv-

alence responding with compound stimuli (e.g, Debert, Huziwara, Faggiani, De Mathis,

& McIlvane, 2009; Debert, Matos, & McIlvane, 2007; Grisante et al., 2013). Similar

procedures to the go/no-go procedure have been developed, such as go left/go right, or

yes/no (D’amato & Worsham, 1974), or same/different (Edwards, Jagielo, Zentall, &

Hogan, 1982). In the review by Fields, Reeve, Varelas, Rosen, and Belanich (1997), the
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wide variety of psychological phenomena that have been addressed using these method-

ologies is outlined.

By applying MTS procedure, Fields and Verhave (1987) identified four atemporal

parameters with which defined the structures of all equivalence classes: class size, number

of nodes, training directionality, and nodal density. These parameters are defined briefly

below.

Training structures (training directionality)

In equivalence literature, with MTS procedure three training structures have been used

in establishing conditional discriminations: linear series (LS), many-to-one (MTO) also

known as comparison-as-node, and one-to-many (OTM), also known as sample-as-node (e.g,

Arntzen, 2012). Figure 3 shows the training structures for three-members equivalence

classes. The order of training relations are: AB, and BC in LS; AC, and BC in MTO;

and AB, AC, in OTM settings. There are several studies on the differences between LS,

OTM, and MTO training structures (e.g, Arntzen, 2012; Arntzen, Grondahl, & Eilifsen,

2010; Arntzen & Hansen, 2011).

A B C

A

A

Linear Series (LS)

B

Many-to-One (MTO)
Comparison-as-node

One-to-Many (OTM)
Sample-as-node

B

C

C

Training Structures

Figure 3: Training structures for an equivalence class with three members indicating by A,
B, and C letters. Solid arrows show the training relations and dashed lines show derived
relations, or test relations. Training relations are: AB, and BC in LS; AC, and BC in
MTO; and AB, AC, in OTM (e.g, Arntzen, 2012).

Class Size vs. Number of Classes

Class size refers to the number of members within a class. Class size and number of

classes may also affect the formation of stimulus equivalence classes. For instance, the
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reported results of two experiments that have been conducted to study stimulus equiva-

lence as a function of class size and number of classes indicate that the number of nodes

disrupts the probability of equivalence class formation more significantly than the number

of classes (Arntzen & Holth, 2000).

Nodal Number

A node in equivalence class terms refers to any stimulus, or class member, which is

related to at least two other members in the equivalence class through training. Stimuli

that relate to only one other stimulus in a class are referred as singles (Fields & Verhave,

1987). Nodal number (Sidman, 1994) or nodal distance (Fields & Verhave, 1987) is the

number of nodes between two members of the equivalence class. Nodal number specifies

the smallest number of required baseline nodes for particular new stimulus pairs to become

members of a relation. For instance, when AB and BC relations are trained, the nodal

number for AC relation is one (see linear series in Figure 3). Nodal density refers to the

number of stimuli related to a particular node. In the AB/BC training, the nodal density

of B is two for AC/BC training, the nodal density of C is two and for AB/AC the nodal

density of A is two, see Figure 3.

Relatedness in Equivalence Class

In stimulus equivalence literature, it has been postulated that after the baseline relations

are trained well in typical humans, all the stimuli in an equivalence class are each equally

related to each other (e.g, Barnes, Browne, Smeets, & Roche, 1995; Fields, Adams, Ver-

have, & Newman, 1993; Sidman & Tailby, 1982). However, evidence from experimental

studies show that under some conditions, different stimuli can have different levels of

relatedness (see, Doran & Fields, 2012, for more details). Fields and Verhave (1987) ad-

dress the effect of class size, number of nodes, training directionality, and nodal density,

either alone or in conjunction with each other, on the relatedness between stimuli in an

equivalence class. The study by Spencer and Chase (1996) addresses the relatedness on

equivalence formation by measuring the response speed during equivalence responding

and provides a temporal analysis of the responses. A decrease in the relatedness between

the members with higher nodal number is observed too in Fields and Verhave (1987).

Likewise, Doran and Fields (2012) show that stimuli within an equivalence class are dif-
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ferently related based on nodal distance and relational type. The degree of relatedness

between equivalent stimuli has been studied using more sensitive measures than MTS

results (e.g., Bortoloti & de Rose, 2011) confirming the notion that equivalent stimuli

may differ in their degree of relatedness.

Delayed Matching-to-Sample

Conditional discriminations procedures might be either simultaneous MTS or delayed

MTS (see, Arntzen, 2006, as the first parametric study combining delayed MTS and

equivalence performance). In simultaneous MTS, the sample stimulus is presented along

with the comparison stimuli, however, in delayed MTS, the sample stimulus appears first

and disappears for some programmed time before the comparison stimuli are presented.

Simultaneous MTS procedures are applicable when studying learning, while delayed MTS

procedure is relevant for the study of memory (Blough, 1959; Palmer, 1991). The delay

period could be fixed or could be “titrating”. Titrated delayed MTS method, also referred

to as adjusting delayed MTS (Cumming & Berryman, 1965; Sidman, 2013), changes the

length of the delay as a function of the participants’ responses using trials and errors.

In this sense, the participants’ responses provide additional information about the re-

membering behavior of the participant. Titrated delayed MTS has been used to study

remembering in a variety of settings, including to study important variables in analyzing

short-term memory problems (e.g, Arntzen & Steingrimsdottir, 2014a). Delayed MTS

procedures often increase the equivalence responding yield, which could be the result

of rehearsal to keep the sample information during the delay until comparison stimuli

appear (e.g, Arntzen & Vie, 2013).

Performance Evaluation in Matching-to-Sample Tasks

The establishment of the baseline conditional discriminations during training is usually

evaluated through a threshold or mastery criterion (e.g., 95% − 100% of the trials in

a training block answered correct). The successful or unsuccessful establishment of the

baseline relations provides important information about the learning capabilities of a

participant and therefore an experimenter may adjust the training procedure to increase

the chance of establishing baseline relations based on the participant performance (see,

Arntzen, 2012, for instance). If the participant is able to pass the training criterion the
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derived relations will be tested. Usually the criterion ratio in the test phase is lower

than its equivalent in the training phase and there is no programmed consequence. By

passing the criterion for testing in all relations, the equivalence class is considered to be

formed (Sidman & Tailby, 1982).

Reaction time (Dymond & Rehfeldt, 2001; Whelan, 2008) or speed (Imam, 2006;

Spencer & Chase, 1996) can be considered as a supplementary measure worth analyzing in

the stimulus equivalence research. The research on reaction time shows that the response

latency for symmetry trials is longer compared to the baseline relations and even longer

in transitivity and equivalence trials, moreover, reaction time toward the end of testing

is lower compared to the beginning ( e.g., Bentall et al., 1993; Holth & Arntzen, 2000).

Moreover, the stimulus equivalence literature has been expanded by using additional

measures, including sorting tests (Arntzen, Granmo, & Fields, 2017), brain imaging such

as fMRI (Dickins, 2005; Dickins et al., 2001) and EEG recording (Arntzen & Steingrims-

dottir, 2017; Haimson, Wilkinson, Rosenquist, Ouimet, & McIlvane, 2009), or eye-tracking

analysis (Dube et al., 1999; Hansen & Arntzen, 2018; Steingrimsdottir & Arntzen, 2016).

These additional measures could lead to fine-grained analysis of the conditional discrimi-

nations learning and stimulus equivalence responding (Palmer, 2010).

Adaptive Behavior and Learning

Time delay procedure, first was used by Touchette (1971) in teaching discrete responses to

individuals with intellectual disability. From then, time delay and its modifications have

been used in the fields of special education, speech-language pathology, and early inter-

vention (Pennington, 2018). As it has been mentioned, delayed MTS and titrated delayed

MTS can be used as measurement techniques in short-term memory studies (Arntzen &

Steingrimsdottir, 2014a; Sidman, 2013). Spaced Retrieval Training (e.g., Camp et al.,

1996; Camp et al., 1989) is another method of learning and retaining target information

by recalling the information over longer intervals. These methods can be seen as instances

of adaptive learning and the delay time can be addressed by applying theories from the

psychometrics field. In the following, a brief overview of the research from behavior anal-

ysis scientists in education and adaptive learning is provided. The field of psychometrics

and its use in personalized learning is also addressed in this part.
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Behavior Analysis in Education

The history of applying behavior analysis theory in the design and production of hardware

and apparatus as well as methods and practices is quite rich (Twyman, 2014). Skinner’s

Technology of teaching, published in 1968, reflects his theoretical perspective applied

to problems in teaching and learning (Skinner, 2016). To surpass the usual classroom

experience, Skinner designed and implemented a series of studies to improve teaching

methods for spelling, math, and other school subjects using a teaching machine (Skinner,

1954, 1960). A teaching machine could be any device which arranges contingencies of

reinforcement. The teaching machine of Skinner was a mechanical device that uses an

algorithm which combines teaching and testing items and helps the student to gradually

learn the material via a sort of reinforcement learning. Skinner teaching machine aims

to provide a problem tailored precisely to a student skill level, not to the class average,

and assesses every answer immediately to determine the next learning step. Tailored

or personalized learning can not usually achieved in nowadays learning classes given the

scarcity and cost of human teachers, which motivates using a teaching machine to handle

this type of tailored learning.

Keller formulated the Personalized System of Instruction for college teaching (Keller,

1968). Personalized System of Instruction is a widely used teaching plan composed of

small, self-paced, modularized units of instruction with guidance to lead learners over the

modules until they achieve mastery (see, Twyman, 2014, for more details on how behavior

analysis has contributed to the field of education). It is noteworthy that the importance of

tailoring stimuli in learning has also been studied through stimulus equivalence method-

ology (Arntzen & Eilertsen, 2020).

Mathematical Psychology and Psychometrics

A model, which is central in scientific research, can be seen as a simplified illustration of

a system to reduce its complexity and its behavior quantitatively and also qualitatively.

Model types can be conceptual, verbal, diagrammatic, physical, or formal (mathematical).

The central function of modeling is to turn vague and complex ideas into accessible,

explicit, and precise enough so that their implications become clear (e.g, McClelland,

1988).

Devising models mimicking the brain mechanisms is quite hard in psychological science
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due to the brain’s incredible complexity. Busemeyer et al. (2015) address the benefits of

modeling in this complex area as follows:

Nonetheless, the resources of mathematical modeling, neuroscientific knowl-

edge and techniques, and excellent behavioral and neuropsychological exper-

imental designs offer the best we can hope for. ...Electrical engineering and

computer science have long possessed rigorous quantitative bodies of knowl-

edge; we could call them meta-theories, of how to infer the internal mechanisms

and dynamics from observable behavior. (Busemeyer et al., 2015, p. 91).

Historically, the application of mathematics to psychology dates back to at least the

seventeenth century (Batchelder, 2015); theories for experimental phenomena led to the

field of mathematical psychology in the 1950s and statistical methods for measuring in-

dividual differences led to the field of psychometrics in the 1930s. Since experimental

psychology was dominated by behavioral learning theory in 1950s, mathematical mod-

els of the learning process (or mathematical learning theory) became a central topic in

mathematical psychology (Bush & Estes, 1959).

Psychometrics is rather concerned more with how psychological constructs, such as

intelligence, neuroticism, or depression, can be optimally related to observables, like out-

comes of psychological tests, genetic profiles, and neuroscientific information (e.g, Bors-

boom, Molenaar, et al., 2015). The psychometric model, in a sense is a measurement

model that integrates the correspondence between observational and theoretical terms.

The measurement model falls under the scope of item response theory (IRT), a subfield

of psychometrics, if the observed variables are responses to test items. IRT can be seen

as a collection of measurement models which is especially important in the analysis of

educational tests and adaptive testing (e.g, Chen & Chang, 2018).

Briefly, IRT offers several advantages over classical test theory: (1) it pro-

vides more in-depth insight at the item level; (2) it facilitates the develop-

ment of shorter measures (by applying computerized adaptive routines); (3)

it detects cross-group variations in item performance (called differential item

functioning or DIF); (4) and it permits linking scores from one measure to

another (Krabbe, 2016, Chapter 10, p. 171).

In IRT-based models, items have different difficulty levels. Defining or measuring task

difficulty can be addressed in many ways. IRT models determine the probability of a
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discrete result, such as a correct response to an item, based on both item and respondee

parameters using mathematical functions (Krabbe, 2016, Chapter 10).

Adaptive testing has become increasingly important with the advent of computerized

test administration tools. Adaptive testing shortened the test without affecting reliability

by administering items based on the previous item responses of the learner. Computerized

adaptive testing (CAT), also called tailored testing, is a form of computer-based test that

adapts to the examinee’s ability level (e.g, Linden & Glas, 2000). It can be seen as a

form of computer-administered test in which the next item selected to be administered

depends on the correctness of the examinee’s responses to the late items administered (see,

Embretson, 1992, for some contributions of CAT to psychological research).

Adaptive learning designs could also benefit from psychometrics approaches such as

IRT to extract required information for adaptive and personalized learning (Chen, Li, Liu,

& Ying, 2018). An adaptive learning system provides instruction based on the current

status of a learner and together with advances in technology, provides learners with high-

quality and low cost instructions. A recommendation system is a key component of an

adaptive learning system that recommends the next item (video lectures, practices, and

so on) based on the history of learner (e.g, Chen et al., 2018, for some psychometrics ap-

plications in adaptive personalized learning). Adaptive learning in the form of Intelligent

Tutoring Systems, that benefits from the application of artificial intelligence techniques,

will be presented later.

Artificial Intelligence - Machine Learning

Artificial intelligence (AI) is the field devoted to build intelligence demonstrated in ma-

chines, unlike the natural intelligence displayed by humans and animals. Concerning

the concept of intelligence makes AI similar to philosophy and psychology, however, AI

attempts to build artificial intelligent entities in addition to understanding natural intel-

ligence found in nature.

The concept of intelligence has methodically been studied for long times. Scholars

from philosophy and psychology have always attempted to study cognitive functions such

as vision, learning, remembering, and reasoning theoretically and through real experi-

ments. During 1950s, the advent of computer systems led to a paradigm shift as the
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abstracts contemplation on those cognitive categories to be shaped as real experimental

and theoretical discipline. At the moment, AI is a flourishing field which includes many

sub-fields; from perception and logical reasoning, playing games such as chess and go, to

diagnosing diseases. Due to the increasing popularity of AI, experts in different research

disciplines are getting more interested in AI literature and its applications in their re-

spective research fields. It can also be asserted that AI researchers, who are computer

scientists by definition, have applied AI methodologies to other disciplines and that inter-

disciplinary AI research is gaining a lot of momentum. Therefore, this is fair to claim that

the AI as a field of study has expanded with a broad workability (e.g, Russell & Norvig,

2009, for more details).

Systems that think like humans Systems that think rationally

Systems that act like humans Systems that act rationally

``The	exciting	new	effort	to
make computers	think	... machines
with	minds,	in	the	full	and	literal
sense''	(Haugeland,	1985)

``The	automation	of	activities	that
we	associate	with	human	thinking,
activities	such	as	decision-making,
problem	solving,	learning
...'' (Bellman,	1978)

``The	study	of	mental	faculties
through	the	use	of	computational
models''	(Charniak	and	McDermott,
1985)

``The	study	of	the	computations	that
make	it	possible	to	perceive,	reason,
and	act''	(Winston,	1992)

``The	art	of	creating	machines
that	perform	functions	that	require
intelligence	when	performed	by
people''	(Kurzweil,	1990)

``The	study	of	how	to	make
computers	do	things	at	which,	at
the	moment,	people	are	better''
(Rich	and	Knight,	1991)

``A	field	of	study	that	seeks	to
explain	and	emulate	intelligent
behavior	in	terms	of	computational
processes''	(Schalkoff,	1990)

``The	branch	of	computer	science
that	is	concerned	with	the	automation
of	intelligent	behavior''	(Luger	and
Stubblefield,	1993)

Figure 4: Some definitions of AI, based on the categorization by Russell and Norvig (2009,
Chapter 1)

Some definitions of artificial intelligence that are collected by Russell and Norvig
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(2009) are reported in Figure 4. Based on these definitions, an AI researcher might

concerned with either thinking or behavior and want to model humans, or an ideal concept

of intelligence (called rationality). The distinction between a human-centered approach

and a rationalist approach comes from the fact that humans often make mistakes (see,

Kahneman, Slovic, Slovic, & Tversky, 1982, for some of the systematic errors in human

reasoning). Therefore, a human-based approach can be seen as an empirical science,

involving hypothesis and experimental confirmation, while a rationalist approach involves

a combination of mathematics and engineering (Russell & Norvig, 2009). Regardless of

which approach is chosen to the AI, better understanding of brain and intelligent behaviors

in humans and animals could play an essential role in building intelligent machines (see,

Hassabis, Kumaran, Summerfield, & Botvinick, 2017, for some advances in AI that have

been inspired from neuroscience).

In the following, first some artificial neural network models, known as connectionist

models are briefly introduced. Then, reinforcement learning models and some specific

types that are more relevant to this thesis are reviewed.

Neural Networks and Connectionist Models of Cognition

A Computational model, typically studies a complex system by running a simulation on

a computer with the desired parameters and interpreting the behavior of the model. The

computational models in the field of cognitive science are referred to as computational

cognitive models or computational psychology which can be theories of cognition; mostly

process based theories (e.g, Sun, 2008).

Historically, the first known artificial unit based on biological neurons is the McCulloch-

Pitts neuron (McCulloch & Pitts, 1943) which is an abstracted version of a real neuron and

functions as a logic gate, which is assumed to be the main function of a neuron. These

types of neurons are also known as threshold logic units (e.g, Kruse, Borgelt, Braune,

Mostaghim, & Steinbrecher, 2016) since a symbolic logic is applied in order to describe

what neural nets can do. In McCulloch-Pitts nets, a neuron becomes active and sends a

signal to other neurons if it receives enough excitatory input that is not compensated by

equally strong inhibitory input.

Perceptron (Rosenblatt, 1958) is one of the first major advances from the McCulloch-

Pitts neuron with the ability to classify some pattern of input data. Perceptron uses
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non-binary input and weight connections, and adjust the weights so that network can

learn. In such models an artificial neuron is not equivalent to a single biological neuron,

but rather a population of neurons performing a particular function. Some of Rosenblatt’s

predictions for future of perceptrons demonstrated to be surprisingly accurate:

Later Perceptrons will be able to recognize people and call out their names

and instantly translate speech in one language to speech or writing in another

language, it was predicted.2

The idea of using changes in the weight values of the network for learning in artificial

neural networks is based on the biological neural systems and a simple rule of synaptic

plasticity which is proposed by Hebb (1949):

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing it, some growth process or metabolic change

takes place in one or both cells such that A’s efficiency, as one of the cells

firing B, is increased. p.62, Hebb (1949)

This type of learning, known as Hebb’s rule or associative learning, suggested that connec-

tions between neurons with correlated activity must be strengthened; a postulate which

is supported by a large body of experimental evidence (see Karaminis & Thomas, 2012;

Sommer, 2012).

Adding hidden layers to perceptrons yields multi-layer perceptrons, which are basically

the Feedforward neural networks, known also as parallel distributed processing (PDP)

models, Connectionist models, and deep learning. Feedforward networks are called so

since the signals pass along only one way; forward (see Figure 5 for the general struc-

ture of feedforward neural networks). Although Feedforward neural networks are not

considered as biologically plausible, these networks can be seen as universal function ap-

proximation where many applications of the AI is based on these types of networks; such

as object recognition tasks, speech recognition, image processing, self-driving cars (see,

Liu et al., 2017, for a survey of on architectures and applications of such networks).

The Backpropagation algorithm which was introduced in the 1970s, became an impor-

tant fast learning approach to neural networks after famous paper by Rumelhart, Hinton,

and Williams (1985). Feedforward neural networks uses backpropagation algorithm in

2The New York Times, “New Navy Device Learns By Doing” (8 July 1958)
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training for supervised learning and this algorithm is the workhorse of learning in neural

networks. Briefly, the network processes the input and by passing signals through layers

produces an output. Since the learning is supervised, the correct output is known and

therefore the error can be calculated. The network has to figure out how to change the

weights (learning is through adjusting the weights) in order to generate outputs closer to

the right answer. This weight adjustment is for all the connections in the network and

network must figure out how much of the error is due to a particular connection and its

weight; this is also known as Credit Assignment Problem (e.g, Schmidhuber, 2015).

Backpropagation algorithm propagates the error backward toward the network and

captures the amount of error due to each connection in order to adjust the weights to

most efficiently decrease the the errors see, LeCun, Touresky, Hinton, and Sejnowski, 1988,

for a theoretical framework of backpropagation algorithm. Convolutional neural networks,

which is highly praised models in neural networks, is categorized as a feedforward neural

network (Krizhevsky, Sutskever, & Hinton, 2012).

Recurrent neural networks is a more biologically plausible model, in comparison with

feedforward nets, which is appropriate to the time-dependent information processing such

as memory, sequences and dynamics. In recurrent neural networks, units are not just

connected and send signals to the forward layer, but they can project into units in the

same layer and the previous layer. Unlike feedforward neural networks where the output

is only a function of input (a static function is computed), in recurrent neural network

the output is a function of input and internal states or history of learning (a dynamic

function is computed). Sometimes it is hard to distinguish and analyze recurrent neural

networks as multi-layer network due to the cycles in the structure which provides the sys-

tem memory. Hopfield neural networks (Hopfield, 1982) which is also known as content

addressable memories is one of the first models of the learning and retrieval of memories

in the brain. Hopfield neural networks could form a full memory using partial informa-

tion related to that memory. The learning in Hopfield is based on Hebb’s rule and the

so-called one-shot learning, where the network needs to observe each query and memory

only once to learn the association between them (Hopfield, 1982). Boltzmann Machine,

also called stochastic Hopfield network with hidden units, is a similar but more powerful

recurrent neural network where units are stochastic (Ackley, Hinton, & Sejnowski, 1985).

Recurrent neural networks appeared in many applications such as natural language pro-
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cessing (e.g, Collobert et al., 2011), language understanding machine translation, video

processing, music composition and financial markets (Medsker & Jain, 1999). Training

recurrent neural networks is much more challenging than feedforward networks. Back-

propagation through time is a popular solution Which basically transforms a recurrent

network into a feedforward network and update the training weights (Lillicrap & Santoro,

2019). Long Short Term Memory (LSTM) networks is a widely used recurrent neural

network (Hochreiter & Schmidhuber, 1997) which uses memory cells, that is basically a

series of gates. LSTMs’ memory ability make it the standard recurrent neural network in

AI.

Spiking neural networks is another class of neural networks which is a closer model to

the brain, since a real neural network uses spikes, but adding more realism to the model

adds more challenge to train and implement the model.

Both feedforward and recurrent networks use continuous activation functions and back-

propagation which depends on this continues function. In other words, the activity of a

unit can take any value in a range and that value passes through all the connections.

However, real neurons send action potentials, i.e. the neuron send either the spike or

nothing. Spiking neural networks are good models to study how brain works and there is

significant research attention around these networks as an inspiration to the algorithms

in AI (see, Taherkhani et al., 2020, for a review on learning in spiking neural networks).

From cognitive psychology point of view, connectionist models attempt to explain

and replicate intellectual abilities by assuming that neural systems pass activation among

simple, interconnected processing units (McClelland, Rumelhart, Group, et al., 1987).

Connectionist models, or neural network models, are the most commonly used cognitive

model today which similar to all cognitive models, need some building blocks and some

organization for them. The primitives in PDP or connectionist models are units and

connections; with emphasis on the parallel nature of neural processing, and the distributed

nature of neural representation. To define the architecture of a connectionist model,

one decides on the number of units, connectivity pattern between the units, and the

interactions with the environment. The network term typically refers to the set of units

and their connections (McClelland, 1988).

Although Connectionist models have been primarily studied in cognitive science and

cognitive psychology, they have been also applied in behavior analysis studies (Barnes &
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Figure 5: The general structure of two basic neural networks; feedforward and recurrent
neural networks. Deep neural networks usually have many hidden layers. In the learning
process, the knowledge is stored in the connections by changing the connection weights
which justifies the connectionism name for these models.

Hampson, 1993; Barnes & Holmes, 1991; Fodor & Pylyshyn, 1988; Staddon & Bueno,

1991).

Computational Reinforcement Learning

Reinforcement learning (RL) refers to the scientific study of how animals, humans, and

machines use the experience to adapt their behavior in order to maximize the received

total reward from an environment (Busemeyer et al., 2015, Chapter 5).

RL is a highly interdisciplinary field of research that lies at the intersection between

computer science, machine learning, psychology, and neuroscience. RL deals with learning

from evaluative feedback (see Figure 6 for a schematic view) and not corrective feedback

bearing similarities to supervised learning which is dominant in the field of machine learn-

ing (Sutton & Barto, 2018). In supervised learning, an external supervisor provides a set

of labeled samples and the objective is to generalize or extrapolate the kind of responses

that are taught during training. Supervised learning, unlike reinforcement learning, is an

inadequate choice for reactive learning from interaction with the environment (see, Sutton

& Barto, 2018, for details of reinforcement learning schemes).
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Figure 6: The general structure of an RL interacting with environment. At each time
step, the agent perceives the state of environment, performs an action and receives a
feedback. The feedback is the source of learning for the agent which tries to revise its
future actions to maximize its total received reward over time.

Projective Simulation

A newly developed particular type of RL agent, called Projective Simulation (PS) agents (Briegel

& De las Cuevas, 2012) is presented in this section (for detailed comparisons of RL and

PS, see Bjerland, 2015; Mautner, Makmal, Manzano, Tiersch, & Briegel, 2015).

PS model, similar to other reinforcement learning algorithms, can be embodied in

an environment, to perceive stimuli, execute actions, and learn through trial and error.

The PS episodic memory is perhaps the most important difference of PS with other

standard RL algorithms which facilitates modeling more complex features. Learning in

standard RL algorithms is based on estimation of value functions, whilst in PS learning

is through the re-configuration of episodic memory. This re-configuration could be either

by updating transition probabilities or by adding/creating new clips (Bjerland, 2015;

Melnikov, Makmal, Dunjko, & Briegel, 2017).

PS agent interaction with the environment is similar to other RL agents, so that the

agent receives a precept, chooses an action among the possible actions which usually leads

to a reward (positive or negative) from environment. Note that usually negative reward

is referred to as penalty. The agent then tries to bias its actions towards the actions

with positive rewards. The internal mechanism of PS by which agents act is based on a

directed, weighted network of clips, so called Episodic and Compositional Memory (ECM),
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where each clip could represent a remembered percept, action, or sequences of them. It

is noteworthy that the term episodic memory has been coined by Tulving et al. (1972) to

refer to the ability to vividly remember specific episodes of one’s life. EMC memory in PS

agents can be described as a probabilistic network of clips (see Figure 7 for a schematic

view of a network clip in PS agents).
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Figure 7: A memory network in PS model and a random walk on the clip space which
starts with activation of clip cs and reaches the action clip ca that coupled-out the real
action. The clips and transition probabilities between them can evolve based on the
environment feedback.

As demonstrated in Figure 7, once a percept is observed by agent, a clip corresponding

to the percept is activated and a random walk on the clip network triggers. When an

action clip is reached, agent realises the corresponding action. The probabilities of going

from one clip to the next are based on the connection weights of the relevant edges, so

called h-value. If agent receives reward for the chosen action, the edges traversed to reach

that decision are reinforced and as a result the probability of repeating the same behavior

will be increased. The learning in PS agents is not limited to updating the connection

weights through Bayesian rules. The structure of network clip can also be altered by

creating and adding new clips. New clips, can be added either by composing existing ones

under certain compositional principles, or by adding blank clips that can represent novel

content (Melnikov et al., 2017).

Stochastic Point Location (SPL)

Stochastic Point Location (SPL) problem, also synonymously known as Stochastic Search

on the Line (SSL), deals with searching for an unknown point in an interval under faulty
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feedback. SPL is a fundamental optimization problem, pioneered by Oommen (1997)

which has received increasing research interest (e.g, Huang & Jiang, 2012; Mofrad, Yazidi,

& Hammer, 2019; Yazidi, Granmo, Oommen, & Goodwin, 2014). The searching algo-

rithm, also called a learning mechanism, receives information regarding the direction of

the search by interacting with a stochastic environment, which means the provided infor-

mation for the direction towards the point location is noisy and could be erroneous.

The first solution to the SPL problem proposed by Oommen (1997), relies on the

strategy of discretizing the search interval and performing a controlled random walk on

it using a discretization parameter N which is called the resolution. The state of learning

mechanism at each step represents the estimation of point location. The convergence of

this strategy is proved for an infinite resolution (i.e., infinite memory), but this strategy

yields rather poor accuracy for low resolutions. See, Figure 8 for a general view of SPL

solution with discretizing the interval.

0 1/N 3/N 1N-1/N...4/N

Point	location

0.8
0.2

Environment	feedback

Point	estimate

5/N N-3/N

Point	estimate

0.2
0.8

Environment	feedback

Figure 8: The proposed solution for SPL is to discretize the interval and inquiry environ-
ment the direction to the location of point. Since the feedback is faulty, there is a chance
with probability 0.2 that environment points the learner towards the wrong direction. In
the figure, two locations of point estimates in the right and left of searching point are
shown together with the probability of receiving each direction form Environment.

The SPL problem and the proposed solutions (see, e.g. Huang & Jiang, 2012; Jiang,

Huang, & Li, 2016; Oommen, 1997; Oommen & Calitoiu, 2008; Oommen, Kim, Samuel,

& Granmo, 2008; Yazidi et al., 2014) can be seen as a general optimization framework

that can model a wide range of scientific and real-life problems (see Yazidi & Oommen,

2017, for a survey of the solutions that has been reported to the SPL).

Diffusion and Random Walk Processes

Diffusion models have been widely used in cognitive and neural processes of decision mak-

ing representation and choice response time in psychology (see Ratcliff, Smith, Brown,
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& McKoon, 2016, for a survey of diffusion models in psychology). Decision making in

diffusion models are based on accumulating samples of noisy evidence to a response crite-

rion, where new information is used to update beliefs and choose future actions. Decision

making is considered as a statistical process, where successive samples of noisy evidence

or stimulus information are accumulated until a response criterion is meet. The noisy

evidence assumption comes from either the fact that the stimulus itself is composed of a

sequence of noisy events or from the noisy coding in the neural system. Random walk

models can be seen as the discrete-time counterpart of diffusion models (Smith & Ratcliff,

2015).

Network enhancement is based on (Zhou, Bousquet, Lal, Weston, & Schölkopf, 2004)

to solve semi-supervised labeling problem where some of the data points are labels where

the majority was unlabeled. A diffusion process is used to label the rest of the data points

by diffusion of information globally over local graph structure in an iterative manner.

In semi-supervised learning problems the prior assumption of consistency is essential,

that is nearby units most probably have the same label and units on the same structure

are expected to have the same label. The former assumption is local, and the latter

assumption is global.

As Zhou et al. (2004) explicitly mention, the Network enhancement is inspired by

“spreading activation network” in experimental psychology.

This algorithm can be understood intuitively in terms of spreading activation

networks (Anderson, 1983; Shrager, Hogg, & Huberman, 1987) from experi-

mental psychology.

Spreading activation refers to a class of algorithms that propagate activation levels

in a network in order to select the most closely related nodes to the activation source.

The idea of tracing chains of connections addressed in experimental psychology research,

and in the theories of psychologists such as Freud and Pavlov (Anderson, 1983). Quillian

(1967) introduced spreading activation as a computational process that can accomplish

search in semantic networks. Collins and Loftus (1975) proposed a version of the semantic

network model which activation values simultaneously spread through all network links

to account for semantic priming phenomena. In psychological models spreading activa-

tion is used for selecting among several possible related memories or actions when the

situation is ambiguous (Shrager et al., 1987). Zhou et al. (2004) algorithm which is in-
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spired by spreading activation networks (Shrager et al., 1987) updates, let every unit in

the network iteratively spread its label information to its neighbors until a global stable

state is achieved. The algorithm controls the relative amount of the information from

unit neighbors and its initial label information using a regularization parameter. Network

Enhancement model (Wang et al., 2018) introduced an iterative algorithm for denoising

weighted networks with inspiration from the local and global consistency proposed by

Zhou et al. (2004). Specifically, Wang et al. (2018) introduced a localized network to cap-

ture the information of all paths of length three or less connecting any given two nodes

which is used for spreading the information and updating the network weights.

Applications of Network Enhancement Network Enhancement has found mul-

tiple applications which include enforcing similarity links between individual based on

genomics data (Wang et al., 2014), image segmentation in computer vision (Wang, Jiang,

Wang, Zhou, & Tu, 2012), community detection (Hu, Wang, Chen, & Dai, 2020).

Network Enhancement

Network Enhancement (NE) (Wang et al., 2018) is a diffusion-based computational ap-

proach that has been proposed for denoising weighted biological networks. NE converts a

noisy, undirected, weighted network into a network with the same nodes but different con-

nections and weights. The basic assumption is that nodes which are connected through

paths with high weight edges, most probably are directly connected with a high weight

edge. In this regards, the diffusion process in NE uses random walks of length three or

less and a regularized interaction flow in order to revise edge weights (See Figure 9 for an

illustration).

The NE algorithm, takes as an input a weighted network, and iteratively updates its

associated weighted adjacency matrix using the NE diffusion process. NE can be used for

a more accurate detection of modules/clusters in the network.

Related Works

In this section the existing computational models of equivalence classes in behavior anal-

ysis domain as well as Intelligent Tutoring Systems as adaptive learning models are re-

viewed.
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Figure 9: Network enhancement updates the network structure by updating the connec-
tion weights based on the neighboring connections and paths of length two and three. In
the left panel, there are strong paths between node A and node B and therefore, network
enhancement increases the direct connection weight between them. The opposite scenario
is in the right panel, where due to the low-weight connections network enhancement pro-
cess decreases the weight of direct connection. This figure is a modification of proposed
illustration by Wang et al. (2018).

Computational Models of Equivalence Classes

Artificial neural networks could advance the understanding of way derived stimulus re-

lations are formed, by either simulating MTS procedures (Barnes & Hampson, 1993;

Cullinan, Barnes, Hampson, & Lyddy, 1994; Lyddy, Barnes-Holmes, & Hampson, 2001;

Tovar & Westermann, 2017) or training stimulus relations through compound stimuli and

alternative procedures to MTS (Tovar & Chávez, 2012; Vernucio & Debert, 2016).

A well-known behavior-analytic approach to modelling with neural networks is the

network for relational responding, called RELNET (Barnes & Hampson, 1993) which was

designed to simulate complex human behaviors, from the RFT perspective. The model

is a feed-forward neural network that uses standard backward-error propagation (Rumel-

hart et al., 1985) for learning. Three modular stages of RELNET are an encoder that

preprocesses the stimuli for the relational responding machine (central system) as the

second stage, and the third stage is a decoder that decodes the output of the central

system. The simulation of learning task is performed through the central system and the

encoder and decoder act like a simple pattern association. Barnes and Hampson (1993)

replicated the empirical study by Steele and Hayes (1991) which is a contextual control

of derived stimulus relations with MTS procedure. Modified versions of RELNET have

been used to simulate other examples of derived relational responding (see, e.g. Cullinan

et al., 1994). RELNET is also used to study the effect of training protocols in equiva-
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lence class formation (Lyddy & Barnes-Holmes, 2007) through modeling the experiment

by Arntzen and Holth (1997). However, Barnes and Hampson (1997) discuss that lack of

neural plausibility is the major weaknesses of RELNET model. Tovar and Chávez (2012),

also criticise the RELNET model by arguing that the transitive relations are partially

trained during encoding which means the model purpose to form untrained relations is

not completely meet.

Another computational model of formation of equivalence classes with MTS procedure

is presented by (Tovar & Westermann, 2017). The proposed fully interconnected neural

network model links stimulus equivalence field to Hebbian learning, associative learning

and categorization. In the model, each neuron accounts for a stimulus represented through

activation. The weighted connections among neurons spread activation in the network,

and coactivation of neurons based on Hebbian learning, updates the connection weights.

Three high impact studies (Devany, Hayes, & Nelson, 1986; Sidman & Tailby, 1982;

Spencer & Chase, 1996) have been simulated with this model. To validate the model,

the connection weights in the neural network were compared with the results of real

experiments.

Tovar and Chávez (2012) used a three-layer feed-forward neural network to train stim-

ulus equivalence relations with compound stimuli procedures. The network inputs are

stimulus pairs (e.g., A1B1, A1B3) and the outputs are yes/no responses. In order to

derive relations in desired classes, this model requires a previous learning of all possi-

ble relations of an equivalence class, say XY Z. Vernucio and Debert (2016) considers a

replication of this model with a go/no-go procedure, i.e. just considering a yes responses.

Although RELNET, yes/no, and go/no-go models successfully replicate the formation

of equivalence classes, they are not addressing relatedness between members of stimulus

classes, and therefore they are not considered to be biologically plausible (O’Reilly &

Munakata, 2000; Tovar & Westermann, 2017).

The real time neural network model presented by Lew and Zanutto (2011) is based on

biological mechanisms that are able to learn different tasks such as operant conditioning

and delayed MTS. The first layer of this three layers network receives sensory input from

the environment and produces short-term memory traces of them. The second layer’s job

is further filtering of task relevant stimuli which will in the third layer be associated with

the proper response (for an application of the model, see Rapanelli, Frick, Fernández, &
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Zanutto, 2015).

An overview of existing connectionist models of formation of equivalence relations is

provided by (Ninness, Ninness, Rumph, & Lawson, 2018) along with a neural network

framework called emergent virtual analytics (EVA), where the process of applying neural

network simulations in behavior-analytic research is demonstrated (see Ninness, Rehfeldt,

& Ninness, 2019, for more simulations with EVA).

Computational Theories for Adaptive Testing and Learning

Several studies show that personalized learning is the key to increased fulfillment of po-

tential (e.g, Miliband, 2004). A possible solution to the latter problem is resorting to the

advances in AI in order to personalize the teaching process. Achieving computer tutoring

systems that are as effective as human tutors can be traced back to the earliest days of

computers (Smith & Sherwood, 1976). Recent research indicate that computer tutoring

systems can raise student performance beyond the level of traditional classes and even

beyond the level of students who learn from human tutors see, Kulik and Fletcher, 2016,

for a survey. Chirikov, Semenova, Maloshonok, Bettinger, and Kizilcec (2020) show that

online education platforms could scale high-quality science, technology, engineering, and

mathematics (STEM) education through national online education platforms at universi-

ties. This means that such instruction can produce similar learning outcomes for students

as traditional, in-person classes with a much lower cost see also, VanLehn, 2011, for a

review of relative effectiveness of human tutoring, intelligent tutoring systems, and no

tutoring.

Intelligent Tutoring System (ITS)

Intelligent systems (also known as intelligent tutoring systems), is a broad term and con-

sists of any computer program or educational software containing an artificial-intelligence

component (Freedman, 2000). ITS aims to provide personalized sophisticated instruc-

tional advice which outperforms conventional computer-aided instruction systems which

is comparable with human tutors. ITS can be classified according to their underlying

algorithm. Model-tracing tutor, is a well-known category where the algorithm tracks the

progress of student and controls the performance to be in an acceptable interval by adjust-

ing feedback and providing guidance along the way (e.g, Freedman, 2000; Shute & Zapata-
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Rivera, 2010). Sleeman and Brown (1982) pioneered the idea behind ITS for designing

systems assisting students reach their full potential in a limited amount of time. There are

different artificial intelligence approaches to create an ITS including multi-armed bandits

(e.g, Clement, Roy, & Oudeyer, 2015), Bayesian-networks (e.g, Millán, Loboda, & Pérez-

de-la-Cruz, 2010) and neural-networks (e.g, Zatarain Cabada, Barron Estrada, Gonzalez

Hernandez, & Oramas Bustillos, 2015). Many ITSs are based on Computerized Adap-

tive Testing (CAT) which as mentioned earlier is an efficient computer-based testing (see

for instance Hatzilygeroudis, Koutsojannis, Papavlasopoulos, & Prentzas, 2006; Jansen,

Hofman, Savi, Visser, & van der Maas, 2016; Kozierkiewicz-Hetmańska & Nguyen, 2010).

In adaptive testing, the aim is to estimate the participant’s ability and administration

of problems should provide as much information as possible (Birnbaum, 1968; Eggen &

Verschoor, 2006). Adaptive learning or training, on the other hand needs to consider

other factors which are the motivation and involvement of participant (Jansen et al.,

2016). In most adaptive testing and CATs, selection of problems is due to the partici-

pant’s current estimated ability (see, Eggen & Verschoor, 2006, for instance) which means

when the probability of success equals to 0.5. This condition provides highest information

and minimizes the test length. This level of challenge could be frustrating for many of

participants and trade-off between the length of the test and motivation and pleasure of

students is needed. For instance, by using a higher success rate, CAT principles have been

successfully applied for practicing math skills (e.g, Jansen et al., 2016; Jansen et al., 2013;

Klinkenberg, Straatemeier, & van der Maas, 2011). The optimal strategy for motivating

the student has been investigated by Lumsden (1994) which is backed up by Clement

et al. (2015) where the tasks should be slightly beyond the participant’s current abilities,

concurring with theories of intrinsic motivation.

Despite that research on ITS has produced many interesting theoretical insights, using

ITS regularly in schools is not common and there is more effort that is needed to deploy

ITS in real-life learning settings (Shute & Zapata-Rivera, 2010).

Works on Learning Automata (LA) and ITSs e.g, Oommen and Hashem, 2013 can

be addressed here. In simple terms, LA is a stochastic machine attempting to find the

optimal strategy from a set of actions in a random environment. LA is particularly

important in decision making under uncertainty see, Narendra and Thathachar, 2012, for

an introduction to LA. The term tutorial-like systems refers to study tutorial systems
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while no entity needs to be a real-life individual. So, all the component of the model 

are basically an algorithm that simulate the real teacher, student, knowledge-domain, 

etc (Oommen & Hashem, 2013).

For a few design and analysis of tutorial-like system models using LA, consider model-

ing of a student (Oommen & Hashem, 2009b), modeling of a classroom of students where 

artificial students can interact and learn from each other as well as the teacher (Oom-

men & Hashem, 2009a), modeling of a (stochastic) teacher (Hashem & Oommen, 2007), 

modeling the domain knowledge (Oommen & Hashem, 2010), and modeling how teaching 

abilities of a teacher can be improved (Oommen & Hashem, 2013).

Studies Conducted for the Dissertation

The four studies included in this thesis propose computational models of formation of 

stimulus equivalence classes and adaptive testing and adaptive learning. A summary of 

the papers is provided first, followed by ethical considerations and discussion.

Summary of the Studies

Study I

In this study, formation of stimulus equivalence classes through a MTS procedure has 

been modeled based on a reinforcement learning framework called projective simulation 

(PS) (Briegel & De las Cuevas, 2012). In order to make the PS model appropriate for 

stimulus equivalence, we modify the model and name it, equivalence PS (EPS). To the best 

of our knowledge, EPS is the first study which proposes a computational model in stimulus 

equivalence based on machine learning. The extra features that EPS has, in comparison 

with PS, can be further used in machine learning research. The proposed model is as a 

transparent model as opposed to black-box models in AI and is able to control various 

factors such as learning rate, forgetting rate, symmetry and transitivity relation formation 

and stimulus relatedness through nodal number. The model is able to mimic both typical 

participants and participants with some disabilities. The influential experimental studies 

in behavior analysis literature due to Sidman and Tailby (1982), Devany et al. (1986), 

and Spencer and Chase (1996) have been simulated with our EPS framework in order 

to validate our model. Alternatives by which a hypothetical experiment in stimulus
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equivalence research can be studied through EPS have also been discussed in this study.

The learning algorithm, similar to empirical settings, has two phases, the training phase

where the clip network will be shaped and the testing phase where the clip network is used

to cope with new, derived relations. In the proposed model (EPS) a directed graph is used

to differentiate between all types of relations. The symmetry relations are formed during

training, and we assume transitivity and equivalence relations are also formed during

training. However, transitivity and equivalence transition probabilities are calculated on

demand upon trials in the MTS test, which is based on the findings that the response

latencies in transitivity and equivalence tests are typically longer than trained relations

or symmetry tests (Bentall et al., 1993). We propose several methods to address the

test phase and derived relations, including max-product, memory sharpness, and random

walk on the memory network with absorbing action sets. The transitive and equivalence

relations in EPS model are not a part of clip network and they are derived upon request,

i.e. when they appear in a MTS trial during the testing phase. The formation of symmetry

relations, by virtue of the flexibility of PS, can be postponed until the testing phase. On

the other hand, it is possible to establish all the connections in the training phase and

gradually update them during MTS training phase, or during the MTS test.

Study II

Enhanced EPS (E-EPS) model that builds upon EPS proposed a new way of modeling

derived relations which possesses many advantages in comparison with EPS. The E-EPS

has almost the same training phase as the model in Study I, but derived relations are

formed after training phase using an iterative diffusion process called Network Enhance-

ment (Wang et al., 2018). As a result, in testing phase E-EPS retrieves relations from

memory, unlike EPS where derived relations are computed on demand by using some

type of likelihood reasoning. During the network enhancement phase, the structure of

clip network changes and indirect relations get enhanced.

We can regard the clip network at the end of training phase of EPS as a noisy version of

the agent’s memory network that is supposed to contain all trained and derived relations

strong. Using a denoising approach such as network enhancement could produce a new

less noisy clip network with information regarding the equivalence class formation. We

propose directed NE (DNE) diffusion process by which we can control the formation
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or non-formation of derived relations. In order to study the role of parameters on the

agent performance in the E-EPS model, various experimental settings are simulated and

discussed. Moreover, training procedures LS, MTO, and OTM are simulated where similar

to the main stream literature in behavior analysis (see, e.g. Arntzen, 2012; Arntzen,

Grondahl, & Eilifsen, 2010; Arntzen & Hansen, 2011), the model yields better performance

in OTM and MTO cases in comparison with LS.

E-EPS has less parameters in comparison with EPS and is a much simpler com-

putational method and yet accurate. Theoretical analysis of the updating process and

convergence guarantees are established.

Study III

The proposed model in this study is a solution to the SPL problem which is a search prob-

lem for a point location in an interval based on the feedback’s from environment. One

of the applications of this model is to find the tolerable difficulty level by the participant

in an adaptive test. To make the model more realistic, the feedback from participants is

assumed to be inaccurate and the workable difficulty level is assumed to be non-stationary

over time. In this study, two major contributions to the SPL problem are proposed. First,

we employ the concept of mutual probability flux between neighboring states along the

line to improve the estimation of the point location. Next, we estimate the error probabil-

ity characterizing the environment while tracking the position of the optimal point. This

study is partially based on our previous work (Mofrad, Yazidi, & Hammer, 2017) by which

we show that the SPL problem can be solved by tracking two multinomially distributed

random variables using the Stochastic Learning Weak Estimator (SLWE) method (Oom-

men & Rueda, 2006). We proposed to integrate the SLWE, which figures among the most

prominent estimators for non-stationary distributions, as the inherent part of a more

sophisticated solution for the SPL. The estimation strategy at each time step revolves

around tracking the distribution and estimating the point location based upon it. Differ-

ent statistical operators namely maximum, expectation, and median have been applied on

the estimated probability vectors to obtain point location estimates. Simulation results

indicate that, the proposed methods produce smoother estimates than those obtained

from other SPL solutions and can track the changes more efficiently. The probability of

receiving correct feedback from environment, called environment effectiveness, is usually

43



unknown and might change over time. As the second contribution of this study, we esti-

mate the feedback error probability in tandem with the unknown location estimation. In

Study III, the participant performance is modeled using a stair function with two levels:

a high performance for difficulties under the optimal “manageable” difficulty level and a

low performance for difficulties just above the same level, i.e., the “manageable” optimal

difficulty level. However, if we rather use a more realistic performance function according

to which the performance is continuous and monotonically decreases as a function of the

difficulty level, the approach in Study III will basically converge to difficulty level for

which the participant performance is at 50% under some mild conditions. Such remark

motivated Study IV in which we resort to the latter realistic performance model, for effi-

ciently finding a higher rates of performance that are motivating enough for the learner,

usually above 50% such as 70%. For a schematic description of approaches to find task

difficulty based on success probability in Study Study III and Study IV see Figure 10.

Study IV

The Balanced Difficulty Task Finder (BDTF) proposed in this study is a method for ad-

equate difficulty task assignment based on the principles adaptive learning. The BDTF

method is general and can be integrated as a part of an ITS system. BDTF has ap-

plications in learning and remembering techniques in behavior analysis methods such as

titrated delayed MTS and online learning environments. The idea behind BDTF is to

select tasks with appropriate difficulty to the learner so that ensure that the level of mo-

tivation and enjoyment during the learning is maintained. The strategy is similar to Elo’s

chess skill rating (Glickman, 1995) and TrueSkill (Herbrich, Minka, & Graepel, 2006) for

matching game players, where players with similar capabilities and skills are matched.

Choosing an appropriate opponent or appropriate game level in BDTF is analogous to

choosing automatically an appropriate level of the learning task. In this regard, each

participant starts with a predefined difficulty level of tasks (Clement et al., 2015), and

based on the performance of the learner the difficulty of future tasks is adjusted in a trial

and error manner.

The difficulty of any given task is mapped to a number between zero and one where

zero denotes the lowest possible difficulty and one denotes the highest possible difficulty.

In BDTF, we assume the chance of success in a given task decreases monotonically as the
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Figure 10: Comparison of Study III and Study IV. The top-left figure represents the
stair function with two levels which we used in Study III. p represents high performance
for difficulties under the optimal “manageable” difficulty level d∗, and 1 − p is a low
performance for difficulties above d∗. The top-right figure, shows the performance of
proposed model if we instead using a more realistic performance function according to
which the performance is continuous and monotonically decreases as a function of the
difficulty level. The approach in Study III will converge to difficulty level for which the
participant performance is at 0.5 under some mild conditions. The bottom figure, depicts
the approach in Study IV with a more realistic performance model, for efficiently finding
a higher rates of performance that are motivating enough for the learner, usually above
0.5 such as 0.7.
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difficulty level increases. The recommended task difficulty gets increased upon success

and decreased upon failure in an asymmetric manner so that we can adjust the difficulty

of the given tasks and consequently drive the system towards a state of flow (Chen, 2007).

Ethical Considerations

Since this work reports no original empirical research, it is not subject to the ethical con-

siderations regarding participants (humans and animals) that psychology research usually

deals with.

On the other hand, ethical concerns regarding AI algorithms appear mostly in the cases

with social dimensions where AI algorithms act as autonomous agents and team-mates.

For instance, avoiding cognitive biases, seeking reliability and applicability in decision-

making domains such as healthcare, and preventing possible harms of AI to humans and

other morally relevant beings (Bostrom & Yudkowsky, 2014).

Computational modelling in basic research though draw different ethical views. Re-

sorting to a modeling approach rather than to an experimental approach, as an alternative

methodology in studies involving human and animal subjects, may allow behavior-analytic

researchers to formulate, explore, and examine ideas prior to full experimental testing.

These models usually are highly controllable and precise and can be promising candidates

for research. Using cognitive and computational models can reduce the possible harm to

the human and nonhuman subjects by limiting the need to test all the ideas on them.

Moreover, in some cases, such as in the case of Relational Frame Theory, that relies on

a long and often complex histories of explicit reinforcement, it would be so difficult, and

even unethical, to test hypothesises directly on subjects in a behavioral laboratory (Barnes

& Hampson, 1997).

An important feature in developing AI algorithms in general and cognitive models in

particular is transparency and interpretability of the models (e.g, Bostrom & Yudkowsky,

2014; Fleischmann & Wallace, 2017). Some modeling paradigms such as neural networks

are not considered practical in many settings even though they yield accurate predictions

as the predictions of those models are opaque and the logic behind them can not be ex-

plained clearly. The area of Explainable Artificial Intelligence (XAI) (see Biran & Cotton,

2017, for a survey on XAI) has been attracting more attention recently due to the need

to increase the trust and transparency of intelligent agents (e.g, Miller, 2019), including
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the design of models that are inherently interpretable instead of black-box models (see

Rudin, 2019, for instance).

In modeling equivalence formation, it is vital to understand the model and to also

design a biologically plausible model. We found Projective Simulation model as an ap-

propriate candidate for this aim. For adaptive learning, we could apply more complex

models but we rather opted for a fairly simple probabilistic model in favor of interpretabil-

ity and explainability. Therefore, all the proposed models in the studies for this thesis

can be categorized as XAI models with the capability of easy interpretation.

Discussion

The purpose of this dissertation was to propose flexible and interpretable computational

models that replicate formation of stimulus equivalence classes and adaptive learning.

Reinforcement learning agents, in the form of Projective Simulation and Stochastic Point

Location, were the chosen candidates to model the interaction between experimenter and

the participant through the processes.

Although neural networks is one of the most powerful simulation techniques, designing

models that are inherently interpretable instead of black-box models (see Rudin, 2019, for

instance) is an advantage. Projective simulation (Briegel & De las Cuevas, 2012; Mautner

et al., 2015) is a fairly simple graphical model which provides a flexible paradigm that can

be easily extended. Based on projective simulation, we proposed a general simulator for

equivalence relations. In Study I formation of derived relations are computed on demand

through some type of likelihood reasoning. In Study II, Network Enhancement (Wang

et al., 2018) updates the agent memory after training phase and as a result the test

trials become like a memory retrieval phase. The simulators could replicate a variety

of settings in a matching-to-sample procedure. There are different mechanistic accounts

on the formation of stimulus equivalence classes and derived relations. Galizio, Stewart,

et al. (2001) discuss that some degree of equivalence class formation occurs during the

MTS training, which is further enhanced during the testing. In many studies, on the

other hand, the emergence of equivalence relations is considered to be only the result of

testing lower-stage relations (see, part E of Dickins, 2015, for a discussion). Different

approaches to the test phase proposed in Study I and Study II can be interpreted in

accordance with different views on mechanism of deriving relations. Modified versions

47



of the models can address other types of training procedures, such as compound stimuli.

A possible approach for modeling compound stimuli is to use the generalized projective

simulation (Melnikov et al., 2017) that considers clips composed of different categories.

The proposed models, on the other hand, can be considered as an extension of PS model

which might be interesting solely from a machine learning point of view. For instance,

symmetry connections and variable action sets could be used in more general applications

or the use of diffusion methods to update the clip network.

To compare E-EPS with EPS, we found the implementation of NE more adequate and

useful, in the sense that it can be interpreted as a denoising procedure that happens within

the agent’s memory. The employed procedures such as the max-product rule described in

Study I had been introduced as an external, ad-hoc computational tool rather than an

intrinsic feature of the model. The use of NE, on the other hand, fits more naturally into

the semantics of PS/EPS. On the more technical side, the E-EPS model also avoids the

use of the memory sharpness parameter and provides a more elegant process to model

and control the transitivity relations and other features such as the nodal effect. From

computational point of view, the presented method in Study II has less parameters in

comparison with Study I where the testing phases involved more processing than memory.

In modeling stimulus equivalence, we propose an interpretative reinforcement learning

models and focus on the computational models proposed in behavior analysis domain.

However, the concept of equivalence relations is modeled in other domains more frequently,

say in cognitive psychology and cognitive science (e.g, Kumaran & McClelland, 2012) and

a more comprehensive research is needed to include all the models.

Finding the cognitive level of a participant in a learning task in order of designing

suitable level of training is one of the key challenges faced by many learning methods.

This problem is modeled in Study III by SPL with certain conditions. For instance, the

point location is set to be non-stationary, since the manageable difficulty level will change

as time goes for trained participant. Additionally, certainty/probability of the results

is unknown, because there are many factors that might affect the response to a training

which might be irrelevant to the real ability of the participant. In Study III, a new solution

for estimation of point location in the SPL problem is proposed by using the mutual

probability flux concept. The participant performance in this study is modeled through

a stair function with two levels: a high performance for difficulties under the optimal
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manageable difficulty level and a low performance for difficulties just above the same

level, i.e., the manageable optimal difficulty level. The proposed solution outperforms the

original method and estimates the tolerable task difficulty level as fast as possible. As

a measure of reliability of participant performance, the probability of receiving correct

response from the participant is also estimated. However, if we rather use a more realistic

performance function according to which the performance is continuous and monotonically

decreases as a function of the difficulty level, the approach in Study III will basically

converge to difficulty level for which the participant performance is at 50% under some

mild conditions.

Such remark motivated Study IV in which we resort to the latter realistic performance

model, for efficiently finding a higher rates of performance that are motivating enough

for the learner, usually above 50% such as 70%. In Study IV the Balanced Difficulty

Task Finder model searches for appropriate difficulty level in adaptive learning setting

via an asymmetric adjustment technique. The appropriate task difficulty for training and

learning is sought by targeting a higher rate of success in the task sequence in order to

to maintain the level of motivation and enjoyment during the learning, for instance with

70% chance of success. Unlike neural network and Bayesian-network models that rely on

comprehensive student models to be reliable and effective (e.g, Clement et al., 2015), the

proposed model makes a weaker link between the student and the cognitive model and

therefore is much simpler, yet efficient.

As it has been mentioned in Study IV, the task difficulty techniques and adaptive

learning models can be used in a complementary manner with EPS and E-EPS models

for formation of stimulus equivalence classes in the training phase of MTS or titrated

delayed MTS procedures.

It is discussed that there are many parameters to design a training phase. If a difficulty

level can be assigned to each trial, or each block of trials, then the abilities of participants

could be taken into consideration and an adaptive training can be proposed. A handy

example is adjusting the time delay between sample stimulus and the comparison stimuli

which is referred to as tirtrated delayed MTS. The EPS and E-EPS models can easily

have a delay factor by rendering the forgetting factor delay dependent. Note that in our

studies the delay is assumed to be very negligible and so the forgetting factor is fixed.
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Concluding Remarks

Understanding learning and memory mechanisms is crucial in the effort to understand

human behavior and cognition. Computational models of cognition and behavior, as

simplified models of a complex system, might be useful tools to study brain activity

and to analyze experimental data as well as exploring new ideas through simulation.

Computational models can examine variables that are challenging to examine on humans

or animals due to time constrains or ethical issues. Due to the more control over the

experimental variables, components of the computational models can be manipulated,

disrupted, impaired, and removed to study the effect of those components on the results.

(Barnes & Hampson, 1993; McClelland, 2009; Ninness et al., 2018).

In this thesis, to address the complex behaviors such as learning and memory, com-

putational reinforcement learning algorithms are used to model formation of stimulus

equivalence classes and adaptive learning in the face of different task difficulty levels.

In Study I, we proposed to apply Projective Simulation learning agent to the field

of behavior analysis. Our modified version of PS, which we called Equivalence Projec-

tive Simulation (EPS), enables the agent to learn and form stimulus equivalence classes

in matching-to-sample (MTS) experiments. The proposed reinforcement learning agent,

EPS, has a directed, weighted memory, clip network where each clip represents a remem-

bered stimulus that is added to the clip network during the training phase. During MTS

training, the associated connections to the baseline relations are reinforced. In order to

replicate the test phase and study the agent ability to form new relations, EPS relies on

some type of likelihood reasoning whenever tested via a MTS trial. In other words, in

EPS model, derived relations are calculated on demand in the test phase trials externally

using a computational method such as max-product, memory sharpness, or absorbing ac-

tion sets. The flexibility and interpretability of the PS/EPS model allows us to model a

broad range of behaviors in matching-to-sample (MTS) experiments.

In Study II we significantly expand on and improve the model by combining EPS

with a new method, called Network Enhancement (NE), which corresponds to some post-

processing of the agent’s episodic memory. Network Enhancement (Wang et al., 2018).

changes the structure of clip network by enhancing indirect relations with strong paths.

Network enhancement is applied after the training process in order to de-noise the memory

network and distill derived relations. This approach to the testing phase and derived
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relations can be seen as an offline approach, relies rather on memory retrieval during test

phase than on complex logical processing.

Network enhancement changes the structure of clip network by enhancing indirect

relations with strong paths. A modification of network enhancement diffusion method is

proposed by which the updated network remains directed and we can control the agent’s

ability to derive transitivity and also control its ability to derive symmetry.

The proposed method for post-processing of the episodic memory allows one to study

and control the main relations that define an equivalence class, namely reflexivity, symme-

try and transitivity. The main advantage of being able to control these relations through

the model parameters in a clear and interpretable way is that realistic hypotheses can

be easily simulated and new behavior experiments with humans can be designed to test

these hypotheses and gain new insights.

The simulation results of real experiments show that the proposed models are appro-

priate candidates for replication of formation and non-formation of stimulus equivalence

classes. We also compare the main training structures; LS, MTO, OTM, and notice better

outcomes of MTO and OTM training structures in comparison with LS which supports

reported evidences from behavioral analysis literature. E-EPS implementation, in com-

parison with EPS is more adequate and useful, where NE method fits naturally into the

semantics of PS/EPS.

To study the learning and remembering, as the second direction of thesis we propose

a task difficulty recommendation system which can be applied for either testing the level

of participants or providing training administration. In Study III, we propose methods to

yield a difficulty level that a participant can manage in an online manner. The proposed

algorithm is a solution to the stochastic point location that can models many dynamic

and interactive optimization problems. We show that the algorithm is faster and more

accurate than legacy solutions.

The algorithm is also able to estimate the reliability of participant responses which

later can be the decision basis whether participant is in a reliable condition to continue

the training or not.

In Study IV, we benefit from concept of flow in psychology and game-balance in the

game field to propose a task recommender algorithm. The argument is that to maintain

an efficient learning experiment, we need to find tasks that are both challenging and
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motivating for the participant, say the tasks that 70% of the time are correctly answered

by the learner

Overall, to keep the proposed models in the thesis transparent and interpretable, we

avoid the more common approach of neural network models that are often considered as

black-box models and instead use interpretable machine learning models. It is noteworthy

as the final point that although the studies in this thesis aim to propose models for specific

behavior analysis research areas, the proposed models are not limited to behavior analysis

and could embrace broader research areas.
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Tovar, Á. E., & Westermann, G. (2017). A neurocomputational approach to trained and

transitive relations in equivalence classes. Frontiers in psychology, 8, 1848.

70



Travis, R. W., Fields, L., & Arntzen, E. (2014). Discriminative functions and over-training

as class-enhancing determinants of meaningful stimuli. Journal of the Experimental

Analysis of Behavior, 102 (1), 47–65.

Tulving, E. et al. (1972). Episodic and semantic memory. Organization of memory, 1,

381–403.

Twyman, J. S. (2014). Behavior analysis in education. The Wiley Blackwell handbook of

operant and classical conditioning, 533–558.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring

systems, and other tutoring systems. Educational Psychologist, 46 (4), 197–221.

Vernucio, R. R., & Debert, P. (2016). Computational simulation of equivalence class

formation using the go/no-go procedure with compound stimuli. The Psychological

Record, 66 (3), 439–449.

Walker, B. D., Rehfeldt, R. A., & Ninness, C. (2010). Using the stimulus equivalence

paradigm to teach course material in an undergraduate rehabilitation course. Jour-

nal of Applied Behavior Analysis, 43 (4), 615–633.

Wang, B., Jiang, J., Wang, W., Zhou, Z.-H., & Tu, Z. (2012). Unsupervised metric fusion

by cross diffusion. In 2012 ieee conference on computer vision and pattern recognition

(pp. 2997–3004). IEEE.

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., . . . Goldenberg,

A. (2014). Similarity network fusion for aggregating data types on a genomic scale.

Nature methods, 11 (3), 333.

Wang, B., Pourshafeie, A., Zitnik, M., Zhu, J., Bustamante, C. D., Batzoglou, S., &

Leskovec, J. (2018). Network enhancement as a general method to denoise weighted

biological networks. Nature communications, 9 (1), 3108.

Whelan, R. (2008). Effective analysis of reaction time data. The Psychological Record,

58 (3), 475–482.

Yazidi, A., Granmo, O.-C., Oommen, B. J., & Goodwin, M. (2014). A novel strategy for

solving the stochastic point location problem using a hierarchical searching scheme.

IEEE transactions on cybernetics, 44 (11), 2202–2220.

Yazidi, A., & Oommen, B. J. (2017). The theory and applications of the stochastic point

location problem. In New trends in computing sciences (ictcs), 2017 international

conference on (pp. 333–341). IEEE.

71



Zatarain Cabada, R., Barron Estrada, M. L., Gonzalez Hernandez, F., & Oramas Bustil-

los, R. (2015). An affective learning environment for java. In 2015 international

conference on advanced learning technologies (icalt) (pp. 350–354). IEEE.

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., & Schölkopf, B. (2004). Learning with

local and global consistency. In Advances in neural information processing systems

(pp. 321–328).

72



Study I

Equivalence Projective Simulation as a Framework

for Modeling Formation of Stimulus Equivalence

Classes

Asieh Abolpour Mofrad, Anis Yazidi, Hugo L. Hammer and Erik Arntzen

Mofrad, A. A., Yazidi, A., Hammer, H. L., & Arntzen, E. (2020). Equivalence Projective

Simulation as a Framework for Modeling Formation of Stimulus Equivalence Classes.

Neural Computation, 32(5), 912-968. DOI: https://doi.org/10.1162/neco_a_01274

73



LETTER Communicated by Sergio Lew

Equivalence Projective Simulation as a Framework for
Modeling Formation of Stimulus Equivalence Classes

Asieh Abolpour Mofrad
asieh.abolpour-mofrad@oslomet.no
Anis Yazidi
Anis.Yazidi@oslomet.no
Hugo L. Hammer
Hugo.Hammer@oslomet.no
Department of Computer Science, Oslo Metropolitan University,
Oslo 0167, Norway

Erik Arntzen
erik.arntzen@equivalence.net
Department of Behavioral Science, Oslo Metropolitan University,
Oslo 0167, Norway

Stimulus equivalence (SE) and projective simulation (PS) study com-
plex behavior, the former in human subjects and the latter in artificial
agents. We apply the PS learning framework for modeling the formation
of equivalence classes. For this purpose, we first modify the PS model to
accommodate imitating the emergence of equivalence relations. Later, we
formulate the SE formation through the matching-to-sample (MTS) pro-
cedure. The proposed version of PS model, called the equivalence projec-
tive simulation (EPS) model, is able to act within a varying action set and
derive new relations without receiving feedback from the environment.
To the best of our knowledge, it is the first time that the field of equiva-
lence theory in behavior analysis has been linked to an artificial agent in a
machine learning context. This model has many advantages over existing
neural network models. Briefly, our EPS model is not a black box model,
but rather a model with the capability of easy interpretation and flexibil-
ity for further modifications. To validate the model, some experimental
results performed by prominent behavior analysts are simulated. The re-
sults confirm that the EPS model is able to reliably simulate and replicate
the same behavior as real experiments in various settings, including for-
mation of equivalence relations in typical participants, nonformation of
equivalence relations in language-disabled children, and nodal effect in
a linear series with nodal distance five. Moreover, through a hypothetical
experiment, we discuss the possibility of applying EPS in further equiv-
alence theory research.
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1 Introduction

In this letter, we present a novel machine learning model that is able to ef-
ficiently replicate human behavior in equivalence experiments. The main
stream of research in modeling equivalence behavior for humans using con-
nectionist models involves neural networks. Despite being far less complex
than neural network–based models, our model is easy to interpret and flex-
ible enough to model a wide range of behaviors in a matching-to-sample
(MTS) experiment.

Sidman (1971) introduced the stimulus equivalence term, which Sid-
man and Tailby (1982) later characterized through mathematical relations in
equivalence sets: reflexivity, symmetry, and transitivity between members
of an equivalence class. By training some relations in a class, experimenters
could test the emergence of new relations or derived relations on the trained
relations. As a general rule, a class composed of n stimuli needs only (n − 1)
stimulus-stimulus matches to be trained. Each component of these relations
must be used in at least one trained relation, and none of the trained rela-
tions can have the same two stimuli as components. Given these constraints,
there exist many ways for selecting training relation sets, some possibly
more efficient than the others (Fields, Adams, Verhave, & Newman, 1990;
O’Mara, 1991; Arntzen & Holth, 1997; Hove, 2003; Lyddy & Barnes-Holmes,
2007; Arntzen, Grondahl, & Eilifsen, 2010; Arntzen & Hansen, 2011; Fienup,
Wright, & Fields, 2015).

Stimulus equivalence framework as a learning method was origi-
nally used to teach children and adults with developmental disabilities
like autism and Down’s syndrome (Sidman, Cresson, & Willson-Morris,
1974; Groskreutz, Karsina, Miguel, & Groskreutz, 2010; Toussaint & Tiger,
2010; Arntzen, Halstadtro, Bjerke, & Halstadtro, 2010; McLay, Sutherland,
Church, & Tyler-Merrick, 2013; Arntzen, Halstadtro, Bjerke, Wittner, & Kris-
tiansen, 2014; Ortega & Lovett, 2018). However, the equivalence theory can
be used in teaching new concepts to normal children and adults, includ-
ing college students (Sidman, Willson-Morris, & Kirk, 1986; Hove, 2003;
Saunders, Chaney, & Marquis, 2005; Fienup, Covey, & Critchfield, 2010;
Walker, Rehfeldt, & Ninness, 2010; Lovett, Rehfeldt, Garcia, & Dunning,
2011; Grisante et al., 2013; Placeres, 2014; Fienup et al., 2015). Some neu-
rocognitive disorders like Alzheimer’s disease are also a research area that
equivalence theory deals with where it is discussed that derived relational
responding is deteriorated as the cognitive impairment advances over time
(Bódi, Csibri, Myers, Gluck, & Kéri, 2009; Gallagher & Keenan, 2009; Ste-
ingrimsdottir & Arntzen, 2011; Sidman, 2013; Arntzen, Steingrimsdottir, &
Brogård-Antonsen, 2013; Arntzen & Steingrimsdottir, 2014, 2017; Seefeldt,
2015; Ducatti & Schmidt, 2016; Brogård-Antonsen & Arntzen, 2019).

One interesting feature of stimulus equivalence is its efficiency and the
fact that just a small fraction of relations has to be explicitly taught. This
could make a faster intervention in disorders. By training on only a few
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relations, fewer training trials are needed, as the rest of relations can be
simply deduced.

The stimulus equivalence relationship to verbal behavior is another in-
teresting research topic in equivalence literature. For instance, Hall and
Chase (1991) wrote that all equivalence classes could be defined as ver-
bal behavior, but all verbal behavior cannot be fit into equivalence classes.
Moreover, the evidence shows that stimulus equivalence relations are not
formed properly in nonverbal humans (Devany, Hayes, & Nelson, 1986)
and animals (Nissen, 1951; Sidman et al., 1982; Hayes, 1989). Furthermore,
the relational frame theory (RFT) is a psychological theory of human lan-
guage built on equivalence theory (Hayes, 1991, 1994; Barnes-Holmes &
Roche, 2001). This theory describes stimulus equivalence research in rela-
tion to Skinner’s verbal behavior (see, e.g., Barnes, 1994; Clayton & Hayes,
1999; Barnes-Holmes, Barnes-Holmes, & Cullinan, 2000; Hayes & Sanford,
2014; Hayes, Sanford, & Chin, 2017, for more details on RFT research).

Investigations in the area of stimulus equivalence traditionally, have em-
ployed humans or animals as experimental participants. However, artificial
neural network (ANN) models of cognition, often referred to as connectionist
models (CMs) (see McClelland & Rumelhart, 1987; Bechtel & Abrahamsen,
1991; Commons, Grossberg, & Staddon, 2016, for CMs) have been devel-
oped to simulate the behavior of human participants in stimulus equiva-
lence experiments. Connectionism tries to explain and replicate intellectual
abilities using ANNs (McClelland & Rumelhart, 1987). Many researchers
have been exploring methods in which ANNs could develop the under-
standing of derived stimulus relations by using simulated MTS procedures
(Barnes & Hampson, 1993; Cullinan, Barnes, Hampson, & Lyddy, 1994; Ly-
ddy, Barnes-Holmes, & Hampson, 2001; Tovar & Westermann, 2017) or by
training stimulus relations through compound stimuli and alternative pro-
cedures to MTS (Tovar & Chávez, 2012; Vernucio & Debert, 2016). A con-
nectionist model of RFT is presented in Barnes and Hampson (1997).

Connectionism brings a common conceptual and empirical domain for
both behavior analysis and cognitive science (Fodor & Pylyshyn, 1988; Stad-
don & Bueno, 1991; Barnes & Holmes, 1991; Barnes & Hampson, 1993). De-
veloping connectionist models of equivalence formation could be a tool to
study the limitations and power of connectionism. For instance, modeling
the formation of stimulus equivalence classes shows that semantic and syn-
tactic relations can be modeled through connectionist networks (Barnes &
Hampson, 1993) as opposed to discussion within frequently cited studies
(Fodor & Pylyshyn, 1988).

The development of computational models makes it possible to examine
variables that are challenging to examine on humans or animals due to time
constraints or ethical issues. For instance, components of the computational
model can be easily manipulated, disrupted, impaired, and removed to see
the effect of those components on the results. Having more control over the
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experimental variables, including a controllable environment, is a major
advantage of these models over experiments with human and animal
subjects (Barnes & Hampson, 1993; McClelland, 2009; Ninness, Ninness,
Rumph, & Lawson, 2018).

Computational models could be used for exploring the implications
of new ideas through simulation (McClelland, 2009). Behavior-analytic
researchers can apply ANNs to understand, simulate, and predict de-
rived stimulus relations made by human participants. Furthermore, a good
model of complex behaviors, like the formation of stimulus equivalence
classes, will lead to a better understanding of the disorders that applied
behavior analysis deals with and might enable us to suggest new interven-
tions for patients (Murre, Graham, & Hodges, 2001; Baddeley, Kopelman,
& Wilson, 2003).

On the other hand, the experimental data from humans could enhance
the model of brain function in an efficient way. Similar to studies with hu-
man subjects, patients’ data are valuable for making the model more real-
istic. For instance, knowing that people with dementia might not be able to
derive transitive relations (Arntzen, Steingrimsdottir, & Brogård-Antonsen,
2013), would be an aid to advance the model.

Although neural networks are one of the most powerful simulation tech-
niques, their black box nature makes interpreting their models hard (Zhang
et al., 2018), and there are serious discussions for designing models that are
inherently interpretable instead of black box models (see Rudin, 2019, for in-
stance).1 Moreover, in general, the computational power comes from a com-
plex network that replicates the complex behavior appropriately, but does
not help in understanding the underlying mechanisms of the brain (see, e.g.,
Silver et al., 2016, deep neural network model) and (see, e.g., Mnih et al.,
2015, deep reinforcement learning model). Among different types of ma-
chine learning schemes, reinforcement learning (RL; Sutton & Barto, 2018)
is the closest computational model to actual learning in humans and other
animals, and many RL algorithms are inspired by biological learning sys-
tems such as stimulus-response theory from behavioral psychology.

The newly developed idea of projective simulation (PS) agents (Briegel
& De las Cuevas, 2012) can be seen as an RL algorithm. Projective simula-
tion (Briegel & De las Cuevas, 2012; Mautner, Makmal, Manzano, Tiersch,
& Briegel, 2015) provides a flexible paradigm that can be easily extended, a
feature that makes it a suitable framework for equivalence class formation.
PS is not a black box, and although it is a fairly simple graphical model,
we will demonstrate that it is powerful enough to model equivalence class
formation.

1
By “black box,” we mean that although we can get accurate predictions from the

model, we cannot explain or identify the logic behind the predictions in a clear way.
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We propose a modified version of PS in order to make the model appro-
priate for equivalence modeling. The modification of the PS model not only
makes it suitable for producing equivalence emergence, but also adds extra
features to the PS model that can be used in machine learning research. In-
deed, by studying how the brain works in equivalence theory, we can devise
more intelligent algorithms that mimic human nature and can be applied
in other fields.

The outline of the letter is as follows. In section 2, we provide the re-
quired background from stimulus equivalence and projective simulation.
The state-of-the-art computational models of equivalence formation are dis-
cussed and compared to the newly presented model. Moreover, PS is com-
pared with standard reinforcement learning methods, and the motivation
behind choosing PS as the basis of our model is provided. In section 3, we
present the modified version of PS (called EPS hereafter). Section 4 reports
the artificial model results from EPS and compares them to the results of
real experiments in order to demonstrate that the model can produce realis-
tic results despite its simplicity. In section 5 we provide concluding remarks
and further suggestions.

2 Background and Related Works

To address the required background of this work, in section 2.1, we explain
the concept of stimulus equivalence and some methods that are used to
learn and test the relations in behavior analysis. In section 2.2, we discuss
some computational models and connectionist models of stimulus equiv-
alence class formation. We explain the projective simulation as a model of
intelligence machines in section 2.3. The standard reinforcement learning
(RL) models are compared with PS in section 2.4 and the reasons behind
selection of PS framework are discussed.

2.1 Stimulus Equivalence. Stimulus equivalence research is about
complex human behavior research, including research on memory and
problem solving, that in the past was studied only by cognitive psychol-
ogy (Sidman, 1990). The stimulus-equivalence methodology, introduced by
Sidman (1994), uses MTS procedures to train arbitrary relations between
unfamiliar stimuli and deals with testing some derived relations through
reflexivity, symmetry, transitivity, and equivalence.2

The MTS or conditional discrimination procedure occurs when a stim-
ulus, say A1, is given, and it must be paired with B1 among a set of
comparison stimuli, say B1, B2, and B3. The discrimination is done through
feedback or rewards provided by the experimenter, not because of resem-
blance between the matched stimuli. This arbitrary match between stimuli

2
“Arbitrary MTS” means there is no conceptual relation between an equivalence class

members.
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is a key aspect for studying the emergence of equivalence relations that are
not matched directly (Sidman, 2009).

Two main procedures in behavior analysis for training the relations are
MTS, which uses simple stimuli (Sidman, 1971; McDonagh, McIlvane, &
Stoddard, 1984; Sidman et al., 1986; Arntzen, 2012), and the go/no-go pro-
cedure or successive matching-to-sample (S-MTS) that uses compound (or
complex) stimuli (Markham & Dougher, 1993; Debert, Matos, & McIlvane,
2007; Debert, Huziwara, Faggiani, De Mathis, & McIlvane, 2009; Grisante
et al., 2013; Lantaya, Miguel, Howland, LaFrance, & Page, 2018). In MTS,
the traditional procedure, a sample stimulus is paired with one of the given
choices; in compound stimuli, a match is shown, and the participant learns
if it is a correct match or not through trial and error (see Grisante et al., 2013;
Lantaya et al., 2018, for comparison of the procedures).

In equivalence literature, three training structures have been used to
establish conditional discrimination with an MTS procedure: linear series
(LS), many-to-one (MTO), and one-to-many (OTM) (Arntzen, 2012). For in-
stance, if any of equivalence classes have four members, each from one of A,
B, C, and D, categories, the order of training relations would be: AB, BC, and
CD in LS; AD, BD, and CD in MTO; and AB, AC, and AD in OTM settings.
However, a mixture of these methods is also a possibility—for example, AB,
BC, and DC.

Conditional discrimination procedures might also be either simultane-
ous MTS or delayed MTS. In simultaneous MTS, a sample stimulus is pre-
sented that might require response.3 Subsequent to the response, the com-
parison stimuli will appear. Both sample and comparisons remain on the
screen until one of the comparisons is selected. However, in delayed MTS,
the sample stimulus appears and disappears first. Then the comparison
stimuli appear after a certain time delay, which could be fixed (called fixed
delayed MTS) or changing (called titrated delayed MTS).

The performance evaluation of participant is usually done according to
the criterion that the participant must pass in order to have mastered the
training phase. After mastery of the training relations, the testing phase is
done. Note that the mastery criterion ratio should be placed higher in train-
ing (e.g., 0.95–1) than in testing (e.g., 0.9–1), and that in the testing phase,
there is no feedback from the experimenter.

The equivalence class is considered to be formed whenever the evi-
dence (passing the criterion for testing) shows that all these relations are
established (Sidman & Tailby, 1982) (for more details about MTS training

3
The standard MTS procedure requires that the sample stimulus receives a response

by the participant before the comparison stimuli appear (say, by clicking on the sample
stimulus in computer setting experiments or by touching it in a physical setting). This
guarantees that the sample stimulus has been observed. Sometimes there is no need to
respond, but a delay between the appearance of sample stimuli and responses (usually 1
to 2 s) is considered.
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and testing procedures and parameters in formation of stimulus equiva-
lence classes, see Arntzen, 2012).

2.2 Computational Models of Formation of Stimulus Equivalence
Classes. There are two main families of equivalence simulation methods:
the first familiy simulates MTS procedures that consider simple stimuli
(Barnes & Hampson, 1993; Cullinan et al., 1994; Lyddy et al., 2001; Tovar
& Westermann, 2017), and the second familiy simulates equivalence forma-
tion through compound stimuli (Tovar & Chávez, 2012; Vernucio & Debert,
2016).

One of the well-known behavior-analytic approaches to neural network
is RELNET, the network for relational responding, which is a feedforward
neural network with backpropagation learning (Barnes & Hampson, 1993).
The model consists of three modular stages: the first stage is an encoder that
preprocesses the stimuli for the second stage, called relational responding
machine (central system), and the third stage is a decoder that decodes the
output of the relational responding machine. The three stages are separate
modules. The encoder and decoder act like a simple pattern association,
while the simulation of the learning task is done through the central sys-
tem. RELNET simulates the MTS procedure for training and testing trials
of conditional relations. It is used (Barnes & Hampson, 1993) to replicate a
contextual control of derived stimulus relations in a real experiment (Steele
& Hayes, 1991) and to study the effect of training protocols in equivalence
class formation (Lyddy & Barnes-Holmes, 2007) by modeling the experi-
ment in Arntzen and Holth (1997). One of the criticisms of to the RELNET
model is that the transitive relations were partially trained during encod-
ing and therefore not derived from directly trained relations, in accordance
with the formation of equivalence classes (Tovar & Chávez, 2012).

Another computational model that uses MTS procedure is presented in
Tovar and Westermann (2017). The model is a fully interconnected neural
network that links the equivalence class field to Hebbian learning, asso-
ciative learning, and categorization. The model assumptions are threefold.
First, each neuron accounts for a stimulus that is represented through acti-
vation. Second, the weighted connections between different neurons spread
activation in the network, and third, the coactivation of neurons based on
Hebbian learning updates the connection weights, and, as a result, the net-
work learns the relatedness of relations, both trained and derived. The
model simulates three high-impact studies (Sidman & Tailby, 1982; Devany
et al., 1986; Spencer & Chase, 1996), and the connection weights in the model
were compared with the results of real experiments, which validates the
model in various scenarios, such as the replication of failures in transitive
responding for the experiment with disabilities (Devany et al., 1986).

Another promising alternative to MTS is to train stimulus equivalence
relations with compound stimuli procedures (Tovar & Chávez, 2012). The
network input in this case is stimulus pairs (e.g., A1B1, A1B3) and the



Equivalence Projective Simulation 919

output is yes/no responses. This model requires previous learning of all
possible relations of an equivalence class, say, XYZ, in order to be able to
make derived relations in desired classes. Areplication of Tovar and Chávez
(2012) using a go/no-go procedure (i.e., just considering a yes responses)
is presented in Vernucio and Debert (2016). Both connectionist models are
capable of simulating humans’ formation of derived stimulus relations
without the assistance of sample marking duplicators that RELNET needs.
Although RELNET, go/no-go, and yes/no models are promising models,
they are criticized for their inability to describe the relatedness of mem-
bers of stimulus classes and are not considered to be biologically plausible
(Tovar & Westermann, 2017; O’Reilly & Munakata, 2000).

The neural network presented in Lew and Zanutto (2011) is a real-time
neurocomputational model based on biological mechanisms that is able to
learn various tasks, including operant conditioning and DMTS. The net-
work has three layers. The first layer receives sensory input from the en-
vironment and produces short-term memory traces for them. The second
layer allows further filtering of task-relevant stimuli, which will then be as-
sociated with the proper response in the third layer (see Rapanelli, Frick,
Fernández, & Zanutto, 2015, for an application of the model).

A good overview of existing CMs is provided in Ninness et al. (2018)
along with a working example of a neural network called emergent vir-
tual analytics (EVA; see Ninness, Rehfeldt, & Ninness, 2019, for more sim-
ulations with EVA). Through EVA, the process of applying neural network
simulations in behavior-analytic research is demonstrated.

In our current study, we model the MTS procedure and use simple stim-
uli based on PS as a machine learning framework. The proposed model is
not a connectionist model but a reinforcement learning agent that is biolog-
ically plausible and uses Hebbian learning principles.

2.3 Projective Simulation. Projective simulation, introduced recently
(Briegel & De las Cuevas, 2012), is a machine learning model built on prin-
ciples from physics and relies on stochastic processing of experience. The
model can be seen as a reinforcement learning algorithm that can be em-
bodied in an environment to perceive stimuli, execute actions, and learn
through trial and error.

PS has a neural network–type structure that is considered to be its phys-
ical basis, where any initial experience can activate other patterns in a
spatiotemporal manner. The memory type in PS denoted as episodic and
compositional memory (ECM), which literally is a directed, weighted net-
work of clips, where each clip represents a remembered percept, action, or
sequences of them.4 Episodic and compositional memory can be described

4
Episodic memory, introduced in psychology by Tulving (1985) and Ingvar (1985), has

gained increasing attention in the cognitive neuroscience and other scientific fields.
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Figure 1: A memory network in PS model and a random walk on the clip space
that starts with the activation of clip cs and reaches the action clip ca that cou-
pled out the real action. The clips and transition probabilities between them can
evolve based on feedback from the environment.

as a probabilistic network of clips. In the following, we use the terms episode
and clip interchangeably.

Once a percept is observed, its coupled clip is activated and a random
walk on the clip network is triggered, until an action clip is reached and
coupled out as a real action that the agent does. In other words, any recall of
memory is understood as a dynamic replay of an excitation pattern, which
gives rise to episodic sequences of memory (see Figure 1).

Indeed, in the PS model, a random walk in the network of clips happens
before the action is excited. An interpretation is that the agent projects itself
to the future (imagines what will happen if an action is chosen) and there-
fore complex decisions might be taken, including choices that were not in
the training phase (like stimulus equivalence).

The main part of the agent is usually considered to be its learning pro-
gram, which depends on the nature of the agent and its environment. The
learning in PS is realized by updating of weights and structure through
adding new clips. The connection weights between the clips are updated
through Bayesian rules. New clips will be created and added via interac-
tion with the environment as perceptions or from existing clips under cer-
tain compositional principles (Melnikov, Makmal, Dunjko, & Briegel, 2017).

2.4 Comparison of PS with Reinforcement Learning. Here, we pro-
vide a very brief comparison between PS and other well-studied RL al-
gorithms (see Sutton & Barto, 2018, for details of reinforcement learning
schemes, and Bjerland, 2015, and Mautner et al., 2015, for detailed compar-
isons of RL and PS). We also discuss our reasons for selecting PS over other
RL methods.
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It is worth mentioning that RL is different from supervised learning,
which is dominant in the field of machine learning. Supervised learning
is performed through a set of labeled samples provided by an external
supervisor. The objective of this important kind of learning is to general-
ize or extrapolate the kind of responses that are taught during training. In
this way, it can handle situations that were not present in training trials.
A reinforcement learning model bears close similarity to human and an-
imal learning. The development of RL algorithms has benefited from ad-
vancements within other fields, especially psychology and neuroscience.
Supervised learning, however, is not an adequate choice for learning from
interaction with environment.

The notion of PS can be used as an RL algorithm, since, like RL, it is
an independent embodied agent that interacts with the environment and
learns by trial and error through feedback. However, PS is a more general
framework that is able to use quantum mechanics and solve larger tasks
than those possible with RL (Paparo, Dunjko, Makmal, Martin-Delgado, &
Briegel, 2014; Mautner et al., 2015).

The most important difference between PS and other standard RL al-
gorithms is its episodic memory, which allows modeling more complex
features. More specifically, learning in RL is based on estimation of value
functions, while in PS, learning is through the reconfiguration of the mem-
ory network. This reconfiguration could be simply the update of transition
probabilities or by adding or creating new clips. Standard RL has no coun-
terpart for this dynamic change in structure (new clips), which makes the
PS model more flexible (Melnikov et al., 2017; Bjerland, 2015).

The fact that PS distinguishes between real percepts and actions by us-
ing their internal representation makes it more similar to the functioning of
the brain, such as the idea of cognitive maps (Tolman, 1948; Behrens et al.,
2018), the role of internal manipulation of representations (Piaget, Chilton,
& Inhelder, 1971), and brain mechanisms for episodic memory (Hasselmo,
2011).

3 Formation of Stimulus Equivalence Classes in Projective Simulation
Setting

We present the standard model of PS formalism in section 3.1, where the
notations are mostly from Melnikov et al. (2017). In section 3.2 we present
EPS through algorithms.

3.1 The Formalism of PS. First, the agent’s policy is defined as an exter-
nal view of agent’s way of behaving at a given time t. The policy is denoted
by P(t)(a|s), which represents the probabilities for selecting each possible
action a ∈ A, when percept s ∈ S is received.
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Let C = {c1, · · · , cp} be the set of possible internal states of the agent. In
the clip network of memory, the transition probabilities from clip ci ∈ C to
clip c j ∈ C at time step t are defined as

p(t)(c j|ci) = h(t)(ci, c j )∑
k h(t)(ci, ck)

, (3.1)

where the weight h(t)(ci, c j ), called the h-value, is updated as follows at time
step t:

h(t+1)(ci, c j ) = h(t)(ci, c j ) − γ (h(t)(ci, c j ) − 1) +
{

λ(t) if traversed

0 else
,

(3.2)

where 0 ≤ γ ≤ 1 is a damping parameter and λ ∈ � is a nonnegative re-
ward given by the environment. Equation 3.2 shows that h(t+1)(ci, c j ) will
be affected by the reward at previous time t only if the (ci, c j ) connection
was traversed during the random walk at time t. � could be a subset of
real numbers, in accordance with the learning task and environment type.
In the simplest case, � = {0, 1}, where λ = 1 means a reward and λ = 0
means no reward. h-values are initialized with h0 = 1 as soon as a transi-
tion link (an edge) is established. A positive damping parameter enables
the agent to weaken and even totally forget what it has been learned until
time step t (i.e., h(t)(ci, c j ) − h0). As discussed in the PS literature (Melnikov
et al., 2017, for instance), the damping term is not necessary for stationary
environments as in contextual bandit tasks (Wang, Kulkarni, & Poor, 2005).
The SE task that we model has a stationary environment in which the de-
sired percept-action relations do not change over time. However, since we
aim at modeling the brain and because gradual forgetting is an important
characteristic of human memory, we keep it in the model.5

In order to keep conditional probabilities in equation 3.1 well defined,
equation 3.2 guarantees that h-values are lower bounded by h0 when reward
λ is not negative. An alternative expression for the transition probability,
known as the softmax (or Boltzmann) distribution function, can handle the
negative rewards and keeps the transition probabilities nonnegative,

p(t)(c j|ci) = eβh(t) (ci,c j )∑
k eβh(t) (ci,ck )

, (3.3)

5
To apply the PS agent in modeling the contextually controlled equivalence classes,

the environment might be considered nonstationary since the established relations could
change to new relations. In spite of that, a contextually controlled equivalence class exper-
iment can be considered stationary if one argues that the relations will not change under
a specific context.
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where β can be used for tuning the learning rate as well. Lower values of β

increase the chance of choosing an edge with a larger h-value.6

Before moving to the next section, we briefly introduce emotion tags and
reflection time in the PS model. Emotion tags belong to an emotion space
that has arbitrary emotion states. The tags are attached to the transition links
between clips and indicate the associated feedback that was stored in the
evaluation system of memory. The role of these tags is similar to a short-
term memory of the previous rewards for previous actions. So the agent
might avoid an action if a negative tag is attached. The state of the emotion
tag attached to transition links changes based on the feedback, so if the en-
vironment changes, the agent could update its short-term memory quickly.
It is important to consider emotion tags as internal memory of rewards, dis-
tinct from external real rewards by environment.7

The emotion tags can be used by the agent in order to avoid immediate
action when the reflection time is greater than one (R > 1). Reflection time
is the frequency that the agent can reflect on its action. More specifically, if
the random walk on the memory space ended in an action where the agent
remembers that the previous reward for this action was not desirable, the
agent reexcites the percept clip and gives other action clips the chance to be
selected rather than coupling out the action clip to the real clip.

3.2 Equivalence Projective Simulation Model. Some desired features
of a beneficial model in equivalence formation through MTS could be:

1. The ability to form equivalence classes—that is, correctly match de-
rived relations (i.e., symmetry, transitivity and equivalence) in MTS
trials

2. The ability to show different relatedness factors between stimuli in an
equivalence class—for instance, show that relatedness is an inverse
function of the nodal distance (Fields, Adams, & Verhave, 1993)

3. Endowment with the forgetting ability similar to that humans
4. The ablility to model memory and learning disabilities by manipu-

lating tuning parameters
5. Possible use as a hypothesis testing tool before conducting a real

experiment

There are different views on the mechanism of deriving relations, that
is, either during the training phase and before the testing phase or dur-
ing the MTS test. For instance, Galizio, Stewart, and Pilgrim (2001) noted

6
Note that there is no tuning parameter in equation 3.2 for h-values. Moreover using

β computationally means that instead of a natural logarithm, a different base (i.e., eβ ) is
used.

7
We do not use emotion tags in this letter. For modeling more advanced scenarios of

equivalence formation such as contextually controlled stimulus equivalence formation
(Bush, Sidman, & Rose, 1989), one can apply emotion tags to improve the model.
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that some degree of equivalence class formation occurs during MTS train-
ing and that it is enhanced during testing. However, in many other stud-
ies, the emergence of equivalence relations is considered to be the result
of testing lower-stage relations (see Dickins, 2015, part E, for a discussion).
As explained in Dickins (2015) explained, evidence is established through
brain-imaging studies.

At this juncture, we provide the assumptions in our EPS model:

• Appropriate training of baseline relations is necessary for the forma-
tion of an equivalence class, but it is not sufficient.

• Any symmetry relation is a function of its entailed baseline relation.
K2 attempts to model mechanisms in the brain that can influence the
formation of symmetry.

• Formation of transitivity is a function of well-trained baseline rela-
tions. However, a memory sharpness (θ ) less than one can weaken
the effect of baseline relations. Memory sharpness (θ ) plays a similar
role to K2 and controls derived relations with nodal distance greater
than one (i.e., transitivity and equivalence relations).

• θ could be chosen as a constant independent of the nodal distance or
could vary according to it.

• Equivalence formation is a function of both symmetry and transitiv-
ity formation, so K2 and θ could be seen as other mechanisms in the
brain, along with the reinforcement of baseline relations, that might
affect the emergence of equivalence relations.

• In EPS, whenever symmetry and transitivity relations emerge, equiv-
alence relations will emerge as well.

• EPS does not model reflexivity, since in many experiments with hu-
man adults, the ability to perform a reflexivity task is usually taken
for granted (see Dickins et al., 2001, for instance).8

The proposed model (EPS) aims at modeling human behavior when all
the stimuli in an equivalence class are expected to be equal. One option is to
consider an undirected graph as the memory clip, define all the stimulus-
stimulus connections as bidirectional, and drop the K2 parameter. However,
evidence from experimental studies shows that derived relations are some-
times weaker than baseline relations, and sometimes not formed at all. In
order to cover more general cases, such as humans who are not able to de-
rive new relations, we consider a directed graph and differentiate the types
of relations. Moreover, EPS can be extended to model other derived rela-
tions in line with equivalence or sameness, as it is in RFT. In such a case, a

8
PS has the capability to add features to the stimuli and define transitions between

clips within each category, including self-loops at each clip. The formation of reflexiv-
ity can be achieved using high h-values for self-loops and low h-values within different
stimuli in the same category.
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directed graph, similar to the current selection in EPS, is needed to differ-
entiate relation types.

In the proposed EPS model, symmetry relations are formed during train-
ing, with the assumption that transitivity and equivalence are also formed
during training. However, since the response latencies in transitivity and
equivalence tests at the beginning are typically longer than trained relations
or symmetry tests (Bentall, Dickins, & Fox, 1993), transitivity and equiva-
lence transition probabilities are calculated for each trial in the MTS test.
However, by virtue of the flexibility of PS, the model can be modified so
that the formation of symmetry relations is postponed to the testing phase.
Also, one can establish connections in the training phase and gradually up-
date them during the MTS testing phase or during the MTS test.

In the following, we model an arbitrary MTS experiment independent of
the training structures (LS, OTM, MTO). The agent has no memory at the be-
ginning (the memory space C is empty); however, all the stimuli potentially
belong to the set of percepts (S) and actions (A), as well as remembered
clips C. This initialization will be shown with S = C = A = ∅. The percept
and possible actions are provided by the environment at each time step.

The sample stimuli will make the percept clips, and the comparison stim-
uli will make the action clips. A policy corresponds to a set of stimulus-
response rules or associations where S is the set of stimuli and A is the set
of responses. The memory space will be updated and enlarged through the
training phase. Clips are added the first time that the agent perceives them.

The algorithm has two phases. In the training phase, the memory net-
work is shaped, and in the testing phase, no new memory clip is created
but new connections can be added and initialized.9

3.2.1 Training Phase. At each time step in general and at the beginning
more specifically, the agent might create new clips, add new transition links,
and update them based on the reward value. In the model, a memorized clip
could simultaneously play the role of either percept clip or action clip.

Since the training structure is through MTS, the possible actions in each
trial are limited to a subset of all actions—the set of comparison stimuli.10

The action space at time t is denoted by At . The probability that action a(t) is
chosen by the agent when percept s(t) is presented may depend on the his-
tory of experiment. Indeed, the agent learns through changing its internal
network, which determines the agent future policy.

In the PS model and in general form, the clips as the building blocks of
memory are defined as sequences of remembered percepts and actions. In

9
The agent can be provided with the possibility of creating new, or “fictitious,” clips

during the testing phase. We do not resort to fictitious clips in this letter.
10

For simplicity, we consider that the location (order) of comparison stimuli is not
important.
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modeling the SE, each memory clip represents a remembered stimulus, as
either a sample stimulus or a comparison stimulus.

Note that the sample stimulus (percept s ∈ S) and the comparison stim-
uli (actions a ∈ At) belong to different categories, like Greek letters, nature
pictures, or colored balls. As a result, each of the class members belongs to
a different category (say, category A or B) and there is no connection (paired
relation) within elements of a category.

Moreover, in stimulus equivalence, there is no redundancy in the train-
ing phase, so the only information that could assist during the learning
comes from the members of a category. Consequently, when a new cat-
egory appears in trials, the agent creates connections with equal weights
since there is no prior information from previous connections. The agent’s
operation cycle can be summarized as follows:

1. Stimulus s ∈ S with probability P(t)(s) is perceived from the environ-
ment.

2. A fixed input-coupler probability function I(c|s) activates the mem-
ory clip c ∈ C, denoted by cs. This typically maps the real stimulus s
to its internal representation clip with probability 1. When a stimu-
lus is perceived for the first time, a clip is created and added to the
network.

3. Action set At is perceived from the environment. If any of the actions
a ∈ At do not have an internal image, a clip ca will be created.

4. If there exist connections among the sample and comparisons, the
agent computes the p(t)(ca|cs), a ∈ At based on the h-values. If such
connections do not exist, the agent establishes and initializes them
and then computes the probabilities p(t)(ca|cs).

5. The agent selects one of the possible actions based on the computed
probability distribution. Then excitation of the selected action clip
maps to a real action a ∈ A through a fixed output-coupler function
O(a|ca). Similar to the input coupler function in general, this function
maps the internal action to the real action with probability one.

6. The agent receives a positive or negative reward from the environ-
ment. The connection weights, h-values, will be updated due to this
feedback such that the desired match be reinforced.

An important issue in modeling the SE is that the percepts and actions
could play the same role. For instance, B1 is a possible action in AB relation
training, and in the original PS memory, it is remembered as an action clip,
but it would play the role of percept in BC training. Subsequently, the role of
clips will be changed based on the trial. This double role of clips makes the
network slightly different from PS. Another distinction between the models
is derived relations. Handling symmetry relations in the model is taken care
of by establishing the opposite transition links whenever a specific MTS is
presented for the first time.
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Therefore, initialization of the transition links and h-values for newly
added clips is done simply by establishing two direct connections for each
possible new match and initializing them with h0. So if the newly added
clip is a percept clip, the number of new connections would be 2|At |. If it is
an action clip, just two connections will be established.

To complete the process, the updating rules for h-values based on the
environment feedback must be added. Recall that we consider negative re-
ward in the model as well: � = {−1, 0, 1}. The reason is that in MTS meth-
ods, the participants are usually notified whether the chosen stimulus was
correct or incorrect.

We suggest two methods for updating h-values. The first method, similar
to PS, keeps positive the h-values that are lower bounded by h0. Therefore,
this method is suitable for being used in both equations 3.1 and equation 3.3.
The second method cannot be used in equation 3.1. The difference between
methods occurs when the agent received a negative reward. We explain the
positive reward first and then the two alternatives for negative reward.

Suppose the percept is s ∈ S , coupled into cs ∈ C, and the chosen action
by the agent is a ∈ At , which is coupled out from clip ca ∈ C. Let λ(t) = 1:
the agent chooses the correct option, which must be reinforced. The h-value
updates will be calculated like a PS model,

h(t+1)(cs, ca) = h(t)(cs, ca) − γ (h(t)(cs, ca) − 1) + K1λ
(t), (3.4)

where K1 is a positive value and equals one based on PS. The opposite link,
(ca, cs), will be updated in a similar way, but with parameter 0 < K2 ≤ K1

(see equation 3.5). We could consider a simpler model with bidirectional
connections representing typical humans who are trained well. This is anal-
ogous to setting K2 = K1:

h(t+1)(ca, cs) = h(t)(ca, cs) − γ (h(t)(ca, cs) − 1) + K2λ
(t). (3.5)

If λ(t) = −1, the agent chooses a wrong option that must be inhibited.

• First scenario for updating h-values. This negative reward reinforces
all the actions in At except the one that the agent has chosen. Let
ca′ ∈ O−1(At ) − {ca}, where O() is the output coupler function that
transforms a set of clips into real actions. Since O() is one-to-one, its
inverse is well defined,11 the updates rule is

h(t+1)(cs, ca′ ) = h(t)(cs, ca′ ) − γ (h(t)(cs, ca′ ) − 1) − K3λ
(t), (3.6)

11
We abuse notation since O() coupled-out an action clip to its real counterpart; how-

ever, for simplicity, we use the same notation for the function that sends a set of clips to
the set of real actions.
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where K3 ≤ K1
m−1 and m = |At | is the number of options in the action

space at time t.12 Note that since λ(t) = −1, the term −K3λ
(t) is pos-

itive. The symmetry connections are updated in the same way, that
is, the transition weight from clip ca′ to clip cs will be increased by an
additive factor K4 where 0 < K4 ≤ K2

m−1 :

h(t+1)(ca′ , cs) = h(t)(ca′ , cs) − γ (h(t)(ca′ , cs) − 1) − K4λ
(t). (3.7)

• Second scenario for updating h-values. The second scenario is similar to
the positive reward. The h-values of the transitions will be updated
by a negative factor. In this case, only the soft-max method can be
used for conditional probabilities.

When all clips are created and all possible relations are added and ini-
tiated, further training trials are updating the h-values as explained above
until the desired relations meet the criterion, so we will be able to move to
the testing phase.

3.2.2 Testing Phase. The testing phase starts when all training relations
meet the mastery criterion. In this phase, we test the emergent relations that
are not trained explicitly. During the test, basically there is no feedback,
and we can consider that the evolution of the network based on external
feedback is finished. However, one can consider the feedback λ = 0 and
let the forgetting factor work with dissipation rate γ . The experimenter can
consider various testing procedures, such as a random selection of mixture-
of-the-learn relations and the emergent ones, or testing symmetry relations
first, then transitivity relations, and equivalence relations (a combination
of symmetry and transitivity) afterward. At the end of experiment, usually
the percentage of correct choices in a specific relation will be calculated and
analyzed.

In the artificial model, however, one can use the final policy P(a|s), a ∈
A, s ∈ S for analysis instead of running a testing phase. The agent’s func-
tioning during the testing phase can be summarized as follows:

1. Stimulus s ∈ S with probability P(t)(s) is perceived.
2. A fixed input-coupler probability function I(cs|s) activates the mem-

ory clip cs ∈ C.
3. Action set At is perceived from the environment.
4. If connections exist among the sample and comparisons, the agent

computes the p(t)(ca|cs), a ∈ At based on the h-values. If such connections
do not exist, the agent establishes imaginary connections and computes the

12
The reason that we define K3 this way is intuitive. The information we got from

the negative reward reinforces other options; moreover, it is an indirect process so the
expectation is that it will be less effective than the direct ones.
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probabilities p(t)(ca|cs). The connections in this case represent the transitiv-
ity or equivalence relations.13 This is the case when nodal distance (Fields
& Verhave, 1987) or, equivalently, nodal number (Sidman, 1994) is positive,
and there is at least a path with length L ≥ 2 between the possible matches.14

There might be several options and policies to compute the probability
of derived connections. For instance, one might consider the most probable
paths between cs and each action ca, a ∈ At , which is

p(t)(ca|cs) = max
PL∈P (cs,ca )

L−1∏
i=0

p(t)(cli+1 |cli ), (3.8)

where P (cs, ca) is the set of all possible paths from cs to ca, and PL ∈ P (cs, ca)
is a specific one with L ≥ 2. li; i = 1, 2, . . . (L − 1) shows the indices of in-
termediate clips, while cl0 = cs and clL = ca. In section 4.1, the max-product
scenario for computing derived probabilities is addressed.

Memory sharpness, 0 ≤ θ ≤ 1, functions as a mechanism to control the
formation of transitivity relations, in line with baseline relations training.
Memory sharpness is analogous to the deliberation time in the PS model.

If θ = 1, meaning it is simply omitted from the model, the well-trained
baseline relations result in strong transitivity connections. This fact is not al-
ways true for all real experiments. Therefore, we introduce memory sharp-
ness in the model to control transitivity, equivalence relations, and the
effect of the nodal distance. Memory sharpness can also represent the ef-
fect of comparison stimuli and to what extent the agent recalls its memory
(memory sharpness is addressed in section 4.2).

Instead of max-product policy, equation 3.8, one might consider a ran-
dom walk in C, starting from cs and ending with a clip in At . In other words,
instead of finding the most probable path from cs to each of possibilities in
At , the probability of reaching each action from cs can be considered. These
probabilities, as explained in detail in section 4.3, can be computed easily
when actions ca ∈ At are set to be absorbing states of the underlying Markov
chain, at time t.

5. The agent selects one of the possible actions based on probabilities
p(t)(ca|cs), and the activation of the action clip maps to a real action a ∈ A
through a fixed output-coupler function O(a|c).

Since, the aim is to compare the performance of this artificial agent
with human results, we could have considered these probabilities without

13
In this case, if one does not establish and update the inverse links during the training

phase, symmetry connections must be calculated.
14

A node in equivalence class terms refers to any stimulus, or class member, that con-
nects at least two other members in the equivalence class through training. The nodal
distance or nodal number is the number of nodes between the two members.
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running the testing phase. However, we prefer to keep it this way to show
similar functioning of the agent in the testing phase.

Algorithms 1 and 2, respectively, summarize the environment and the
agent operations in the training phase. Note that the protocol gives all
the information that the experimenter (and the environment in the arti-
ficial model) needs to perform the experiment, including all the stimuli,
the training structure (say, LS, OTM, or MTO), learning, and the mastery
criterion.

It is worth mentioning that the training loop in algorithm 1 might have
other stopping criteria along with the mastery of training relations. For in-
stance, an upper bound for the number of trials t might be specified in the
protocol or a limitation on the time period that the participant can spend
before choosing an option. The experimenter might exclude such partic-
ipants from analysis. However, in the artificial model, there is no need
to consider such cases; instead, it is more beneficial to put some restric-
tions on the memory evolution and tuning parameters to avoid undesired
scenarios.

The environment and agent algorithms during the testing phase (i.e., no
feedback) are presented in algorithms 3 and 4, respectively.

A sample protocol sheet that the experimenter has is presented in proto-
col 1, and a description of how EPS models this experiment is provided in
detail in appendix A.
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Protocol 1:

• Three four-member classes {A1, B1,C1, D1}, {A2, B2,C2, D2}, and {A3,

B3,C3, D3} are going to be trained with an arbitrary MTS procedure.
• Let the order of training relations be AB, BC, and DC.
• The set of comparison stimuli will appear simultaneously after a 1 s

delay.
• The training is in blocks of 30 trials, a mixture of the possible three

relations, each 10 times. Each answer will be followed by feedback:
correct (λ = 1) or incorrect (λ = −1).15

• The training mastery criterion is to answer 90% of the trials in the
block correctly.

• If the participant leaves the experiment or could not learn a set of
relation after T = 1000 steps, terminate the experiment by notifying
the participant.

• If the training mastery criterion is met, the testing phase consists of,
respectively, four blocks; baseline, symmetry, transitivity, and equiv-
alence. The baseline block is composed of AB, BC, and DC relations,
each 9 times. Symmetry is a block of BA,CB, and CD relations, each
repeated 9 times. A transitivity block with size 9 contains the AC re-
lation. The equivalence block contains CA, BD, DB, AD, and DA re-
lations, 9 times each.

15
For instance, the first block would be a random shuffling of A1, A2, and A3, as a

sample stimulus, 10 times each. B1, B2, and B3 make the comparison stimuli or action set
in a random order.



Equivalence Projective Simulation 933

• Compute the percentage of correct answers for the emergent relations
and determine if the equivalence relation is formed.

• The mastery criterion ratio for the test part is 0.9.

4 Simulation of Stimulus Equivalence

Although investigation of various parameters’ assembly is not in the scope
this letter, in order to validate the model and explain its functionality, some
real experiments from the literature, including experiments with patients,
are provided and simulated. We have to figure out how parameters must
be tuned in order to get similar results for healthy people or patients. We
fix θ = 1 in section 4.1 and simulate the sample experiment provided in
protocol 1 using the max-product method for computing the probability
distributions. Next, similar to Tovar and Westermann (2017), we simulate
some high-impact experimental studies in Sidman and Tailby (1982), De-
vany et al. (1986), and Spencer and Chase (1996). The training is in the stan-
dard format in which h-values get positive values. A replication of Spencer
and Chase (1996) with softmax policy, with both positive and negative
h-values, is reported at the end of this section. In section 4.2, we explain
the concept of memory sharpness in detail. We discuss similarities between
the deliberation length in the PS model and nodal distance or nodal num-
ber in equivalence theory and model studies in Devany et al. (1986) as well
as Spencer and Chase (1996). The third case, in section 4.3, is to compute
the transition probabilities between a sample stimulus clip and comparison
stimuli clips through a random walk, that is, as if the action clips are the ab-
sorbing states of the network. In this setting, similar to that of Spencer and
Chase (1996), we explain how the reaction time might be increased with
nodal distance.

The concluding experiment in section 4.4, is a replication of that of De-
vany et al. (1986) with a different training setting. The aim is to show that
EPS is a suitable model to investigate a new hypothesis in equivalence
study.

The following reported simulation results are the average over 1000
simulations.

4.1 Case 1: Max-Product Algorithm for Probability of Transitive and
Equivalence Relations. In the testing phase, when there is no direct con-
nection between percept cs and actions ca ∈ At , in order to find the path from
cs to ca with the highest probability, one way is to convert the max-product
problem into a min-sum problem by using the negative logarithm value.

This is similar to the maximum likelihood algorithms where likelihoods
are converted to log likelihoods. In this manner, products are converted to
sums, and max-products are converted to max-sums. Similarly, the nega-
tive log likelihood converts max-product to min-sum. These variations are
all trivially equivalent. Through this conversion, finding the path with the
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highest probability will be the lowest-cost path problem. The lowest-cost
path problem then can be solved with Dijkstra’s (1959) often-cited and well-
known algorithm or the min-sum/Viterbi algorithm (see MacKay, 2003).
The final values as the probability product of the path with the highest prob-
abilities are normalized to obtain the probability distribution over the action
set that an agent uses to select actions (for more details on how the model
computes the max-product of testing phase, see appendix B).

In this scenario, the relative value of the probabilities is important, and
the nodal distance that affects the probability values might be ignored dur-
ing the normalization. In section 4.2 we deal with this issue using the mem-
ory sharpness parameter.

4.1.1 Experiment 1: Simulation of Protocol 1. Consider an example based
on protocol 1, where the training phase is AB, BC, and DC, respectively. The
mastery criterion is set to 0.9, and each block contains 30 trials. For instance,
a block for training AB contains 10 trials with correct match A1B1, 10 trials
with correct match A2B2, and 10 trials with correct match A3B3. In the re-
sults reported in Figure 2, the blue bars show the outcome of testing phase
(the counterpart of what experimenter receive), and the green bars show
the connection weights of the memory network at the end of experiment
(a representative of the internal state). The baseline is composed of a block
of relations AB, BC, and DC each nine times, which means each relation is
repeated three times in the block. Symmetry is a block of BA,CB, and CD,
each repeated nine times in a similar way. The transitivity contains a block
of AC relations of size 9. Finally, the equivalence shows the results for a
block of CA, BD, DB, AD, and DA relations, nine times each.

In the simulation represented in Figure 2a the parameters are γ = 0.001,
K1 = 1, K2 = 0.9, K3 = 0.5, and K4 = 0.45. Figure 2a shows that all the rela-
tions in equivalence classes are formed. The baseline relations ratio is about
.85, and for transitivity and equivalence, the ratio is about 0.8. In Figure 2b,
the forgetting factor changes to γ = 0.01, which means that the agent forgets
faster. We see that a higher forgetting factor can affect the results severely.
The baseline relations ratio falls to 0.6, and transitivity and equivalence re-
lations ratios fall to about 0.4. Figure 2b also shows a difference between the
connection weights at the end of experiment and the test results. This ex-
plains why experimenters usually repeat the relations during training even
after mastery and test the relations as a mixture of all relations to cancel the
effect of forgetting.

In Figure 2c, γ = 0.001, K1 = 5, K2 = 4, K3 = 2.5, K4 = 2, we aim at ex-
amining how an agent can learn or derive faster by tuning Ki, i = 1, 2, 3, 4
parameters. We see that the results shown in Figures 2a and 2c are similar,
and the only difference is the time for mastery relations, reported in Table 1.
With the setting in Figure 2c, each training block has to be repeated around
3.5 times on average, whereas this is about 6.5 times in Figure 2a setting. So
we can tune the block repetition in training by manipulating parameters. In
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Figure 2: Simulation results derived from experiment 1 with different parame-
ters. The blue bar is the outcome of experiment (analogous to what experimenter
receives), and the green bar is the connection weight of the memory network at
the end of experiment (representing the internal state).

Table 1: Training Time in Various Settings.

Training Time (Figure 2a) Time (Figure 2b) Time (Figure 2c) Time (Figure 2d)

(AB, 30) 6.558 7.221 3.470 1.846
(BC, 30) 6.662 7.299 3.476 1.868
(DC, 30) 6.471 7.188 3.350 1.845

Figure 2d, we study the behavior of an agent when the symmetry relations
are not constructed properly by setting γ = 0.001, K1 = 20, K2 = 1, K3 = 3,
and K4 = 0.3. We observe that a higher value of K1 makes training faster—
about 1.8 times repetition of blocks. As a consequence, the forgetting factor
is less effective, and the baseline relations ratio is about 0.97. We see that the
difference between K1 = 20 and K2 = 1 values resulted in weaker symmetry
formation and weaker equivalence relations consequently.
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Table 2: Training Order in Experiment 2, a Replication of Sidman and Tailby
(1982).

Training Block Size Time Mastery

1. Training AB
A1B1, A2B2 20 4.146 0.927
A1B1, A3B3 20 3.253 0.930
A2B2, A3B3 20 2.077 0.932
A1B1, A2B2, A3B3 30 1.641 0.936

2. Training AC
A1C1, A2C2 20 4.241 0.927
A1C1, A3C3 20 3.244 0.930
A2C2, A3C3 20 2.075 0.934
A1C1, A2C2, A3C3 30 1.682 0.935

3. Training AB and AC
A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3 30 1.497 0.936
4. Training DC

D1C1, D2C2 20 4.215 0.929
D1C1, D3C3 20 3.182 0.931
D2C2, D3C3 20 1.991 0.934
D1C1, D2C2, D3C3 30 1.628 0.932

5. Training AB, AC, and DC
A1B1, A2B2, A3B3,

A1C1, A2C2, A3C3,

D1C1, D2C2, D3C3 45 1.721 0.935

Note: The average number of training blocks before reaching
the mastery criterion ratio, 0.9, in addition to the results in
the last block are reported in the Time and Mastery columns,
respectively.

As reported in Table 1, a greater value of K1 makes the training faster
in general. The forgetting factor also affects the training time. For instance,
if K1 = 1 and γ = 0.001, each block must be repeated about 6.5 times on
average. This will be about 7.3 blocks for K1 = 1 and γ = 0.01 and will be
about 1.8 blocks for K1 = 20 and γ = 0.001.

Next, similar to Tovar and Westermann (2017) we replicate the studies
of Sidman and Tailby (1982), Devany et al. (1986), and Spencer and Chase
(1996).

4.1.2 Experiment 2: Sidman and Tailby (1982). In this study, stimulus
classes with four members are studied in order to analyze the power of
equivalence relations in generating larger networks. Eight children with
typical development were trained with three four-member stimulus classes.
In stimuli set A were spoken Greek letter names; the other stimuli sets (B,
C, and D) were sets of different printed Greek letters. The training order
was AB and AC relations first and then DC relations (see Table 2 for the
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Figure 3: The replication of Sidman and Tailby (1982) when γ = 0.001, K1 = 2,
K2 = 1.8, K3 = 1, K4 = 0.9.

order of training and the blocks of MTS trials). The time column shows how
many blocks on average were used to achieve mastery in the simulation. We
put the mastery criterion ratio at 0.9. The number of necessary blocks was
reduced as the relations repeated. The testing phase in Sidman and Tailby
(1982) was a combination of some baseline and some derived relations, but
we test each relation, say AB, in a block of 30 trials. The results presented
in Figure 3 show the similar results as the experiment, i.e. the formation of
relations.

4.1.3 Experiment 3: Devany et al. (1986). The results for replicating the ex-
periment in Devany et al. (1986) are presented here. This is to model the
case of language-disabled children who cannot manage the equivalence re-
lations. In Devany et al. (1986), three groups of children learned AB and
AC relations from two classes and the tested for formation of BC and CB.16

The training order is presented in Table 3. The test results and the transition
probabilities of the network at the end of experiment are presented in Fig-
ure 4. In the testing phase, each block consists of 20 trials—say, BC consists
of 10 B1C1 and 10 B2C2. As Figure 4 shows, the symmetry and equivalence
relations are not formed properly. While the ratio of the baseline relations
is about 0.9, the BC and CB ratio is about 0.6.

In this experiment, we weaken the formation of equivalence relations
with a lower K2 parameter, which controls the formation of symmetry
relation. However, as can be seen in experiment 6, even with strongly
formed symmetry relations, the formation of equivalence relations is not

16
The three groups were typically developing children, children with a learning dis-

ability with some language skills, and children with a learning disability without lan-
guage skills.
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Table 3: The Training Order in Experiment 3, a Replication of Devany et al.
(1986) for Children with a Learning Disability without Language Skills.

Training Block Size Time Mastery

A1B1 10 1.825 0.944
A2B2 10 1.821 0.947
A1B1, A2B2 10 1.141 0.960
A1C1 10 1.871 0.950
A2C2 10 1.841 0.949
A1C1, A2C2 10 1.118 0.959
A1B1, A2B2, A1C1, A2C2 8 1.746 1.000

Notes: The Time column shows the average repetition of
the training block before reaching the mastery criterion
ratio (0.9), when γ = 0.01, K1 = 1, K2 = 0.1, K3 = 0.2, and
K4 = 0.05. The Mastery column refers to the results in the
last block.

Figure 4: The results for experiment 3, the replication of Devany et al. (1986)
when γ = 0.01, K1 = 1, K2 = 0.1, K3 = 0.2, and K4 = 0.05.

guaranteed as nonformation of transitivity induces nonformation of equiv-
alence relations. See experiment 9 as well to see the effect of K2 and θ in the
model.

4.1.4 Experiment 4: Spencer and Chase (1996). The experiment in Spencer
and Chase (1996) addresses the relatedness (or nodal distance effect) of
equivalence formation, with the expectation of observing a decrease in
the relatedness between the members with higher nodal distance. Spencer
and Chase (1996) measure the response speed during equivalence respond-
ing and provide a temporal analysis of the responses. Similar to Tovar
and Westermann (2017), we try to replicate the standard group, formed
by college students. However, we measure the relatedness by the ratio of
correct answers and the transition probabilities of the network. In the
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Table 4: The Training Order in Experiment 4, a Replication of Spencer and
Chase (1996), to Study the Nodal Effect.

Number of Trials per Relation

Training AB BC CD DE EF FG Time Mastery

AB 48 2.864 0.944
BC 24 24 2.925 0.941
CD 12 12 24 3.139 0.939
DE 9 9 9 24 2.737 0.928
EF 6 6 6 6 24 3.294 0.937
FG 3 3 3 6 9 24 3.438 0.937
Baseline maintenance 3 3 3 3 3 3 1.850 0.964

Notes: The average time before reaching the mastery criterion ratio (0.9), when
γ = 0.005, K1 = 5, K2 = 2, K3 = 2, and K4 = 1. The Mastery column refers to the
results in the last block.

Table 5: The Testing Block Order in Experiment 4, a Replication of Spencer and
Chase (1996) to Study the Nodal Effect.

Label Testing Block Block Size

Baseline AB, BC,CD, DE, EF, FG 6 × 9
Symmetry BA,CB, DC, ED, FE, GF 6 × 9
Transitivity AC, AD, AE, AF, AG, BD, BE,

BF, BG,CE,CF,CG, DF, DG, EG 15 × 9
Equivalence CA, DA, EA, FA, GA, DB, EB,

FB, GB, EC, FC, GC, FD, GD, GE 15 × 9

Note: The results are depicted in Figures 5a and 5b.

experiment, three seven-member stimulus classes consisting of nonsense
figures are trained in six sets of relations (AB, BC, CD, DE, EF, and FG) for
the three classes) via MTS with three response options per trial. Training
consists of seven stages with 48 trials per stage. The training order and the
simulation time to learn them are presented in Table 4. The mastery crite-
rion ratio was 0.9. We use three different orders for the testing phase; the
first two are provided in Tables 5 and 6, and the third one is a mixture of
all the relations with a random order. Figure 5 shows that the model, sim-
ilar to real experiments, is sensitive to the order of testing. We have better
results for baseline relations, around 0.92, when these relations are tested
first in Figures 5a to 5d, compared to results in Figures 5e and 5f, which is
about 0.87. Generally the forgetting factor affects relations during both the
training and testing phases; therefore, using a shuffled mix of all relation
types in the testing phase can weaken the forgetting effect. For instance, in
Figure 5f, we see that the strongest relation results are about 0.87 and the
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Table 6: The Testing Block Order in Experiment 4, a Replication of Spencer and
Chase (1996) to Study the Nodal Effect.

Label Testing Block Block Size

Baseline AB, BC,CD, DE, EF, FG 6 × 9
Symmetry BA,CB, DC, ED, FE, GF 6 × 9
1 − Tr AC, BD,CE, DF, EG 5 × 9
2 − Tr AD, BE,CF, DG 4 × 9
3 − Tr AE, BF,CG 3 × 9
4 − Tr AF, BG 2 × 9
5 − Tr AG 1 × 9
1 − Eq CA, DB, EC, FD, GE 5 × 9
2 − Eq DA, EB, FC, GD 4 × 9
3 − Eq EA, FB, GC 3 × 9
4 − Eq FA, GB 2 × 9
5 − Eq GA 1 × 9

Note: The results are depicted in Figures 5c and 5d.

weakest relation results are about 0.71, but in Figure 5d, these values are,
respectively, 0.92 and 0.6.

Despite the order of testing, the results in Figure 5 show that the model
is sensitive to the nodal distance and can show a reverse effect. However,
in order to achieve a better nodal effect, we simulate this experiment with
other methods of computing probability transitions in the testing phase. In
the following, we report only the results for when the testing is a mixture
of all relations.

4.1.5 Experiment 5: Using softmax to compute the probabilities. For this ex-
periment, we apply the softmax function for transforming h-values into
probabilities. In this case, there are two options: first, we keep h-values pos-
itive and use equations 3.4 to 3.7 for updates; second, we allow h-values to
be negative using equation 4.1 for updates:

h(t+1)(ci, c j ) = h(t)(ci, c j ) − γ (h(t)(ci, c j ) − 1) + K1λ
(t), direct

h(t+1)(c j, ci) = h(t)(c j, ci) − γ (h(t)(c j, ci) − 1) + K2λ
(t), symmetry

(4.1)

where λ(t) = +1,−1.
Again, we replicate the experiment in Spencer and Chase (1996). In Fig-

ure 6a (positive h-values), we see that the higher nodal distance causes
weaker results—that is, the nodal distance and relatedness have a reverse
relation—compare 0.97 for AB with nodal distance zero to 0.83 for AG with
nodal distance five. In Figure 6b, we update the h-values using equation 4.1.
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Figure 5: Simulation results for experiment 4, the replication of the Spencer and
Chase (1996) experiment when γ = 0.005, K1 = 5, K2 = 2, K3 = 2, K4 = 1.

Figure 6 shows that in the case of using softmax, both proposed strategies
for updating the h-values work well.

4.2 Case 2: Different Deliberation Length (Nodal Distance Effect).
One of the scenarios in the PS model (Briegel & De las Cuevas, 2012)
is to have different deliberation times, where D = 0 means direct edges,
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Figure 6: Simulation results of study (Spencer & Chase, 1996) using the softmax
function to calculate the transition probabilities.

as we have in baseline and symmetry relations, and D ≥ 1 for sequences
with D clips between the percept clip and action clip. Then, after activa-
tion of the percept clip, the agent can either go directly to an action clip
(called direct) or reach an action clip after some intermediate clips (called
compositional)—(the detailed account of updating connection weights (h-
values) is in Briegel and De las Cuevas, 2012). We slightly twist the concept
in order to use it in the testing phase of the EPS model. The deliberation
length could be the counterpart for nodal distance in equivalence literature.

In this scenario, during the testing phase and whenever there is no
edge between sample stimulus and comparison stimuli, the agent acts as
follows:

• Similar to the training phase, if there is no connection between per-
cept and action clips, the agent establishes direct edges and initializes
them with h0.

• A memory sharpness parameter, 0 ≤ θ ≤ 1, could control transitivity.
It quantifies how much the agent uses the memory, that is, navigates
through the memory clips and reaches an action indirectly. The more
intact the memory, the higher is the value of θ , and the less intact the
memory, the smaller the value of θ .

• In the PS model, an action is chosen through either direct connection
or compositional clips; the direct connection will be rewarded, so the
chance to go for direct connections will increase. However, we do not
have any reward in this stage and alternate between D = 0 and D ≥ 1
using θ . What we do here is perform a two-factor selection. First, ei-
ther D = 0 or D ≥ 1 is chosen based on the binomial probability with
p = θ ; then the action will be chosen based on the uniform probabil-
ities (D = 0 or no memory) or the max-product scenario.
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• The real probabilities can be simply expressed as a biased sum of the
two probabilities:17

P = θPD≥1 + (1 − θ )PD=0. (4.2)

As we have mentioned, the case 1 scenario (see section 4.1) is a special
case of the scenario proposed here. If the memory sharpness factor achieves
its maximum value, θ = 1, the direct connections and D = 0 have no effect
on the chosen option. The reason for differentiation between the forgetting
factor and memory sharpness is that in reality, one might not be able to
derive new relations even though direct relations are not forgotten.

Since θ is expected to somehow control the nodal effect, it could be de-
fined as a function of D. Otherwise, it affects various transitivity and equiv-
alence relations in the same manner without taking the nodal distance into
account. This nodal effect could be fulfilled in several ways. For instance,
an effective memory sharpness, say θ ′, can be defined as a function of both
D and θ . In this way, we have the ordinary forgetting factor (γ ), general
memory sharpness (θ ) that relates to usage of memory and transitivity in
general, and effective memory sharpness (θ ′), which is a sort of memory
sharpness under the influence of nodal distance.

An effective memory sharpness definition could be θ ′ = θ − D(γ ′),
where θ is a fixed value, which has already been described. In this case,
in order to have θ ′ ≥ 0, we need γ ′ ≤ θ

D .
A method similar to the power-law model of psychological Memory can

be used as well (Donkin & Nosofsky, 2012)—say,

θ ′ = θD−γ ′
, for D ≥ 1

where 0 ≤ γ ′ ≤ 1 and the larger the γ ′, the more intense the nodal effect. In
the following and for simplicity, we use the memory sharpness term and θ

symbol for effective memory sharpness as well, unless it is ambiguous.

4.2.1 Experiment 6: Devany et al. (1986) in Case 2 Setting. Here, similar to
experiment 3, the results for replication of the experiment in Devany et al.
(1986) is presented. In experiment 3, nonformation of symmetry relations
causes nonformation of equivalence relations. We show that nonformation
of transitivity relations can result in the same case.

17
One might look at this as the effect of memory sharpness on the h-values. Instead of

initializing the direct h-values with h0, they might be initialized with a value Kθ where a
smaller θ is proportional to a larger value of Kθ (lowering the memory impact and indirect
paths). Likewise, a bigger θ is proportional to a smaller value of Kθ , to scale in favor of
using memory and longer paths. Then the outgoing probabilities will be computed in a
similar way as PS.
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Figure 7: The results for experiment 6: replication of Devany et al. (1986) when
γ = 0.01, K1 = 1, K2 = 0.9, K3 = 0.5, K4 = 0.45, and θ = 0.5.

The training order is presented in Table 3. The test results and the transi-
tion probabilities of the network at the end of experiment are presented in
Figure 7. As it can be seen from Figure 7, symmetry relations are derived,
but transitivity relations are not formed properly. The ratio of the baseline
relations is about 0.93, the ratio of the symmetry relations for BA and CA is
about 0.9, and the BC and CB relations ratio is about 0.5.

Therefore, in the EPS model, the formation of equivalence relations is a
consequence of the formation of both symmetry and transitivity relations.

4.2.2 Experiment 7: Spencer and Chase (1996) in Case 2 Setting. We repli-
cate the experiment in Spencer and Chase (1996) to address relatedness (or
nodal distance) using memory sharpness. The training order is presented in
Table 4; the testing phase is a mixture of all relations. In Figures 8a and 8b,
the memory sharpness is fixed to θ = 0.7. In Figures 8c and 8d, the mem-
ory sharpness is adjusted in a linear form (θ = 0.7 − D(0.1)), and finally, in
Figures 8e and 8f, the memory sharpness is adjusted in a power law form
(θ = 0.7 × D(−0.8)). Comparing the three cases, we observe that in the case
of fixed memory sharpness, the indirect relations are influenced in the same
way. This can be seen if we compare AC relations with ratio 0.69 to AG rela-
tions with ratio 0.66 in Figure 8b. Through adjusting the scenarios, we can
model the nodal effect better (see Figures 8c and 8e and compare them to
Figure 8a). In Figure 8d, compare the ratio for AC, which is 0.63, to the ra-
tio for AG, which is 0.42. This rate of changes with nodal distance is much
more than fixed memory sharpness. The same comparison in Figure 8f gives
0.69 and 0.43 for nodal distance one at AC and nodal distance five at AG
respectively.

Although the model with memory sharpness (see case 2) is more com-
plex due to extra parameters, it seems that using an adjusting memory



Equivalence Projective Simulation 945

Figure 8: Simulation results for experiment 7, a replication of a study in Spencer
and Chase (1996), when γ = 0.005, K1 = 5, K2 = 2, K3 = 2, and K4 = 1 with dif-
ferent memory sharpness values.
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sharpness could control the nodal distance, and case 2 sounds more
promising.

4.3 Case 3: Action Set as the Set of Absorbing States. In the standard
PS model, an action is coupled out whenever the relevant action clip is
reached. If a unit transition probability is assigned from each action clip
to itself, then the action clips will be absorbing states of the Markov chain
(or memory clip network). Briefly, in an absorbing Markov chain, it is im-
possible to leave some states once visited. Those states are called absorbing
states. Moreover, any state has a path to reach such a state. The nonabsorb-
ing states in an absorbing Markov chain are transient. In our equivalence
PS, since a clip can be used as percept clip and action clip interchangeably,
the network does not have absorbing states in its general form. However,
for simplicity, at each trial where the agent perceives the percept and the
action set, we ignore the output connections and assign a unit transition
probability for the clips in the action clip. As a result, the clips in the action
set temporarily become the absorbing states.

This way, instead of using transition probabilities, we consider the prob-
ability of being absorbed by an action clip in At , starting at percept stimulus.
This is closer to the logic of PS memory clip and the random walk.18

If the size of nonabsorbing or transient clips in the network is nt and the
number of absorbing states is m = |At |, the transition matrix of the network
can be written as

P =
(

Q R

0 Im

)
,

where Q is an nt × nt matrix, R is an nt × m matrix, 0 is the m × nt zero
matrix, and Im is the identity matrix of size m × m. The fundamental matrix
is defined as

N = (Int − Q)−1 =
∞∑

k=0

Qk.

If one starts at clip i, the expected number of nodes before entering an ac-
tion clip is the ith component of the vector N1. This could be used to address
the answering time that is mentioned in Spencer and Chase (1996). The

18
One might bias the random walk according to the action set, since it would be differ-

ent if the actions are present simultaneously or are given with a delay (in the delay case,
the random walk will start without any bias from actions presence). In other words, the
presence of the action set plays a reinforcing role. One possibility is to consider a param-
eter similar to memory sharpness that controls the effect of the action set.
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probability starting at i and ending at absorbing state j is the (i, j)th entry
of matrix M = NR.

Note that as mentioned in the original PS model, it is possible that the
random walk on the clip space falls in a loop and, for instance, goes back
and forth between two clips that have a high transition probability to each
other. As we will see in the simulation, this results into larger expected
steps. However, various mechanisms could control this undesired situation.
A method from Briegel and De las Cuevas (2012) is to put a limitation on the
random walk time, called the maximum deliberation time, Dmax. If the agent
could not manage to reach an action before Dmax, whatever the ultimate ac-
tion would be, it will not be rewarded. But since we are using the random
walk for the testing phase, this is not applicable. Even if we use the absorb-
ing Markov chain to compute the probabilities during the training, instead
of just relying on direct connections, Dmax is not a compatible strategy with
real experiments since in the standard SE protocols, too much delay does
not have the penalty of not receiving feedback from experimenter (here, the
environment). One might use the concept of gating in the model, which is
used, for instance, in long short-term memories (Hochreiter & Schmidhu-
ber, 1997) or a kind of local emotional tags similar to PS. Another option to
avoid revisiting clips could be self-avoiding walks (SAWs).19

4.3.1 Experiment 8: Spencer and Chase (1996) in Case 3 Setting (Absorbing
States). We replicate the experiment in Spencer and Chase (1996) to address
the relatedness in absorbing state setting. The training order is presented in
Table 4. Note that in this experiment, we use a second measurement of nodal
distance, which is the expected number of transitions between the sample
stimulus and an action.

Figures 8a and 8b show that computing probabilities in an absorbing
Markov chain setting has the capability of showing a sort of nodal effect.
Compare AB with 0.87 to AG with 0.37. Figure 8c shows that in general,
greater nodal distance causes higher expected steps. However, based on
the results, nodal distance is not the only factor affecting the number of ex-
pected steps, and the probability distribution plays a stronger role. First, we
note that for AB and GF, the expected number of steps is 1. That’s because
A and G are located at the two end sides of the learning series. The expected
number of steps for BA with zero nodal distance is around 23, which is more
than the expected number of steps for BE with nodal distance two (around
12). So we observe that nodal distance is not the only effect; the input and
output probabilities and the location of a category in the learning order are
also important. Compare BA and FE, where both are symmetry relations
and one node away from one end of the series, but the expected number
of steps for FE is around 4, which is many fewer than 23 steps of BA, so

19
Note that unlike the random walk, the SAW is not a Markovian stochastic process.
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Figure 9: Simulation results of the Spencer and Chase (1996) study using ab-
sorbing Markov chain (see experiment 8) when γ = 0.005, K1 = 5, K2 = 4, K3 =
2.5, and K4 = 2.

the general form of the network must be taken into account as there are
many studies on differences of LS, OTM, and MTO training structures (see
Arntzen, Grondahl et al., 2010; Arntzen & Hansen, 2011; Arntzen, 2012).

In Figure 9c, we see that the expected number of steps is higher than the
shortest path that shows back-and-forth transitions between the clips.

4.4 Experiment 9: Devany et al. (1986) with a New Training Setting.
Computational models can be used to gain insight, build hypotheses, make
predictions, and formulate questions that lead in new directions for empir-
ical research. Experiment 9 could be considered a hypothetical experiment
to see how the proposed EPS model can interact with practical experiments.
The question is whether it is possible to gain better results in Devany et al.
(1986) with the same number of trials but with a different training order.
We propose a new training order that we present in Table 7, along with the
original one in Devany et al. (1986).
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Table 7: The Proposed Training Order in Experiment 9, an Alternative Training
Order to Devany et al. (1986).

Original Training Suggested Training Block Size

A1B1 A1B1 10
A2B2 B2A2 10
A1B1, A2B2 A1B1, B2A2 10
A1C1 A1C1 10
A2C2 C2A2 10
A1C1, A2C2 A1C1, C2A2 10
A1B1, A2B2, A1C1, A2C2 A1B1, B2A2, A1C1, C2A2 8

Figure 10: The results for experiment 9 when we use similar parameters as ex-
periment 3—γ = 0.01, K1 = 1, K2 = 0.1, K3 = 0.2, and K4 = 0.05—but a different
memory sharpness in panel c.

Throughout experiment 9, we suggest that if one chooses a mixture of tri-
als between the given categories, the symmetry relations will be stronger,
and, as a consequence, the equivalence relations might be formed. Intu-
itively, by reinforcing one of the pairs (say, A1B1), the other one will be in-
hibited, A1B2, and so A2B2 gets a higher chance to be selected. The idea is
to train B2A2, which is not formed well (with the chosen parameter values),
instead of training A2B2, which might be derived more easily. The same ar-
gument shows that B2A2 training accelerates deriving B1A1.

A comparison between Figures 10a and 10b, shows that the agent with
similar parameters and training time can achieve better results in BC and
CB relations (compare 0.6 in Figure 10a for these relations to 0.9 in Figure
10b). Based on these results, EPS could suggest that experimenters consider
a different combination of trials in the baseline training blocks.

To complete the circle, suppose an experimenter tests this hypothesis in
practice and observes that the equivalence relations still are not formed.
This means that the problem in equivalence formation does not emanate
solely from symmetry relation formation, but maybe from the transitivity
formation that we referred to in experiment 6. In Figure 10c, we put θ = 0.5
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in order to model the new results. This time, even though the symmetry
relations are formed well, the equivalence relations are not formed (around
0.64). So first we study the effect of a new training procedure in this experi-
ment and then emphasize the fact that equivalence relation formation in the
EPS model is based on both symmetry and transitivity relations. In exper-
iment 3, the lack of strong symmetry relations results in weak equivalence
relations (see Figure 10a). We suggest a possible solution by redesigning the
training setting in experiment 9. However, if the transitivity relations are not
formed similar to experiment 6, equivalence relations cannot be derived as
well (see Figure 10c).

Experiment 9 is an example of the possibility of generating and vetting
an idea in equivalence theory prior to full experimental testing. Note that
to study a behavior, the most important thing is to tune the parameters of
the model and then use them to study new settings.

5 Conclusion

Although computational models of cognition and behavior are simplified
versions of brain activity, they might be a useful tool to study brain activ-
ity and analyze experimental data. In this regard, the model must be inter-
pretable and biologically plausible so that psychologists can rely on it.

In our study, we propose a machine learning scheme for modeling the
equivalence formation. To the best of our knowledge, it is the first study that
approaches computational modeling in stimulus equivalence through ma-
chine learning. We consider a specific reinforcement learning model, projec-
tive simulation, as the foundation of our model, since we found this model
flexible and adaptable to equivalence class formation. The model has an
internal episodic memory that could easily be interpreted and extended
to replicate various stimulus equivalence experimental settings. Our pro-
posed model is not a black box model, which makes it more appropriate for
researchers in behavior analysis to accept and apply it.

As discussed in the simulation results, the model can control various fac-
tors such as learning rate, forgetting rate, symmetry, and transitivity forma-
tion. Nodal effect, an important topic in equivalence formation, is simulated
and explained with EPS. Through simulation of some real experiments in
the behavior analysis literature, we display the model capability to behave
like typical participants or participants with special disabilities. Moreover,
we show how a research idea in equivalence theory can be studied through
EPS.

The proposed simulations can be considered a proof of concept, but
studying the parameters, optimal tuning for a specific behavior, and com-
paring the proposed calculation of probabilities require separate study. For
instance, one might tune different parameters to model a specific behav-
ior in MTS trials or study the optimal number of members and categories,
comparing LS, OTM, and MTO, and so on. Using a softmax function to
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calculate probabilities in an absorbing Markov chain model, as well as
adding a memory sharpness effect, are straightforward steps. Furthermore,
it is possible to add direct edges, initialize them (with h0 or an adjusting
h-value that is proportional to other output h-values), and then compute
the absorbing probabilities. Alternative options are using emotional tags,
gating, or self-avoiding random walks. The main advantage of using PS as
the foundation model is that it is quite flexible and easy to interpret. It can be
modified to address other types of training procedures, such as compound
stimuli, instead of MTS. A possible approach for modeling compound stim-
uli is to use the generalized projective simulation (Melnikov et al., 2017)
that considers clips composed of different categories. The EPS model can
be considered an extension of the PS model that might be interesting solely
from a machine learning point of view. For instance, symmetry connections
and variable action sets could be used in more general applications. Over-
all, we believe that the PS framework in general, and the introduced EPS
model specifically, could be a powerful and flexible tool for computational
modeling in equivalence theory that has many advantages over the existing
connectionist models.

Appendix A: A Detailed Example on How the Model Works

We explain an experiment through modeling protocol 1. First, one of A1, A2,
and A3 is chosen with probability P(t)(s) = 1/3 to be shown as the sample
stimulus, where the comparison stimuli (or actions) will be B1, B2, and B3.
Hereafter, for simplicity, we use the same notations for actual stimuli and
the remembered clips of the stimuli, say, A1 = I(A1), unless this would be
ambiguous. In Figures 11 to 15, the inside of the rectangle shows the agent
memory (clip network), and the outside shows the environment and actual
stimuli. Moreover, red is used for the sample stimuli and its internal clip
at current trial, while blue is used for the comparison stimuli at the same
trial. Solid links are used for baseline relations, and dashed links represent
symmetry links.

• Consider that at time t = 1, sample stimulus A1 is presented to the
agent, so A1 is added to the percept set: S = S ∪ {A1}. Also, a memory clip
representing A1 is created and added to the memory space: C = C ∪ {A1} =
{A1}.
• Based on the learning protocol, the set of comparison stimuli B1, B2, B3

will appear after a 1 s delay.20 Then three memory clips for B1, B2, and B3

20
When the relation A1B1 is the desired relation to be reinforced, the comparison stim-

uli are chosen from the B category. The number of them could be different, but there will
be at least two. In this case, each category contains three members, so we just have one
option of three-member comparison, which the location of the stimuli shown does not
take into account. If there are more members in categories, we have more options.
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Figure 11: The first trial for A1B1 through positive and negative rewards at time
step t = 1. The agent creates clips for all the perceived stimuli (a) and updates
the connection weights based on the environment feedback. The updating rule
in positive reward (b,c) and negative reward (d,e), is presented. The percept clip
(sample stimulus) is shown in red and the action clips (comparison stimuli) in
blue.
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are created by the agent and added to the C space. The action space now
has three members as well, so A = A ∪ A1 = {B1, B2, B3}.
• The new connections and h-values must be initiated, since this

sample stimulus and comparison stimuli are presented for the first
time. At this stage, six edges will be established. Their initial h-values
are h0: h(1)(A1, B1) = h(1)(A1, B2) = h(1)(A1, B3) = h0, and h(1)(B1, A1) =
h(1)(B2, A1) = h(1)(B3, A1) = h0. As a result, the conditional probability
distribution {p(1)(a|s)}A1 is uniform for all possible actions in the memory
space (see Figure 11a).
• Consider that the agent chooses a(1) where:

1. a(1) = B1, that is, the agent chooses the correct option, which must be
reinforced by λ = 1. In this case, h(2)(A1, B1) will be increased by K1

due to equation 3.4. K1 is set to one based on PS. Moreover, we ex-
pect that strengthening A1B1, affects the formation of B1A1 (symme-
try relation in SE), so h(2)(B1, A1) = h0 + K2. Other transitions remain
unchanged (i.e., equal to h0). See Figures 11b and 11c.

2. a(1) = B2, that is, the agent chooses a wrong option (exactly the same
for a(1) = B3 at this stage), so λ = −1. This negative reward reinforces
other options, but not the negatively rewarded one (see Figures 11d
and 11e). In this example, the transition weight from clip A1 to clips
B1 and B3 will be increased by K3 where K3 ≤ K1

2 (see equation 3.6).
The symmetry updates are similar: the transition weight from clip B2

to clip A1 will not change, and the transition weights from clips B1

and B3 to clip A1 will be increased by an additive factor K4, where
0 < K4 ≤ K2

2 , due to equation 3.7.

• Let t = 2, and the sample stimulus be A3, while the comparison stim-
uli are the same as in the previous time step, A2 = A1, so no new action
is added to the action space A. A3 is added to the percept space, now
S = S ∪ {A3} = {A1, A3}. Note that the percept and action spaces are not
shown in the figures and that we depict only how an agent updates its mem-
ory clips during training. Since the trial setting is new, all the transitions will
be established, initialized, and updated like the previous time step. This is
similar to the first time that the A2B2 pair is supposed to be learned. See the
clip network C (inside the rectangle) in Figures 12a and Figure 12b when
clip A3 is added.
• Now consider that the experiment repeated the trials until all the de-

sired AB relations are trained and 90% of agent’s choices within the last 30
trials are correct (see Figure 13a for a schematic representation). The thick
solid links between A1B1, A2B2, and A3B3 show the mastery of these base-
line relations. The thick dashed links show symmetry formation. The weak
links illustrate that although the agent is well trained, there is still a low
chance of a wrong choice in an MTS trial. Based on protocol 1, the environ-
ment trains BC relation next.
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Figure 12: The second trial (t = 2) where A3 is the sample stimulus. The agent
creates a new clip for A3 and updates the h-values based on the learning history,
that is, if the network has been updated with a chosen correct pair (see Figure
11c) or with a chosen wrong pair (see Figure 11e). Only h-values between the
current sample stimulus (A3 in red) and comparison stimuli (B1, B2, B3 in blue)
will be updated at this trial.

At time t′, let the sample stimulus be B1 and the comparison stim-
uli be At′ = {C1,C2,C3} (see Figure 13b, outside the rectangle). At
this point, the percept space is S = S ∪ {B1} = {A1, A2, A3, B1}; the ac-
tion space would be A = A ∪ At′ = {B1, B2, B3,C1,C2,C3}; and the clip
space would be C = {A1, A2, A3, B1, B2, B3,C1,C2,C3}. For clip space
representation, see Figure 13b, inside the rectangle. Note that clip B1

in the agent memory represents both a percept clip and an action clip.
At time t′, three input and three output links will be established from

B1 and initialized with h0 = 1 (see Figure 13b). The probabilities for
all comparison stimuli are then uniform: p(t′ )(C1|B1) = p(t′ )(C2|B1) =
p(t′ )(C3|B1) = 1/3. Similar to the AB training step, the environment
reinforces the desired relation, and by accomplishing this training
phase, we expect a network like the one presented in Figure 14a. Thick
solid links show the well-trained baseline relations, thick dashed re-
lations represent the formation of symmetry relations, and weak links
show a weak possibility for wrong option in MTS trials.

Suppose that BC relation is also trained and passed the criterion (see
Figure 14a, thick connections). The final step in the training phase
is the DC relation. Let D2 be the sample stimulus at time t′′ and
At′′ = {C1,C2,C3} (see Figure 14b, outside the rectangle). D2 will be
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Figure 13: When the AB relation is trained (a) and the B category members ap-
pear as the sample stimulus, clips in the B category will be activated as the per-
cept clips (b) and C1, C2, and C3 will be action clips.
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Figure 14: When AB and BC relations are trained (a), and training the relations
DC is the next step. D2 appears as the sample stimulus, and its connections are
initialized to the C category, which plays the action set role (b).
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Figure 15: A representation of the memory clip network after the training
phase. We show the symmetry connections with the dashed lines in order to
clarify that they are not reinforced directly during the MTS procedure.

added to S , but the action space does not change. A clip for D2 would
be added to C, and the initial links will be established and initialized
with h0 (see Figure 14b, inside the rectangle). The first choice is uni-
formly selected with probability 1/3, but after enough MTS trials, the
probability of the desired pair meets the criterion.

Figure 15 shows the memory network after a successful training phase,
where thick connections are the trained relations and weak connections
show the wrong unfavorable possible choices. For the testing phase, we
can compute the agent’s policy and see if the conditional probabilities for
symmetry, transitivity, and equivalence relations are according to the proto-
col. If the desired one passes the criterion, we will say that the equivalence
relations are formed for the agent. In the simulation part, section 4, we ad-
dress the testing phase using different methods to compute probability dis-
tribution for an action set when the relation is a derived one. We replicate
the testing phase similar to real experiments, along with computation of
probabilities.
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Figure 16: A sample configuration of network h-values after training AB, BC,
and DC based on protocol 1 when γ = 0.0001, K1 = 1, K2 = 0.9, K3 = 0.5, and
K4 = 0.45.

Appendix B: Calculation of Probability Distribution over an Action Set
with Max-Product

Computation of probabilities from h-values is an important phase, since the
agent updates h-values but actions are taken based on probabilities. Two
general methods used in the original PS and in EPS are the standard model
and softmax model. They respectively use simple normalization and soft-
max function over h-values. However, this could be more challenging when
the direct connections do not exist. In this case, one might consider other
conditions that might change the computed probabilities. Here, we explain
a few possibilities for computing probabilities in a max-product scenario,
which we addressed in equation 3.8 and section 4.1.

In Figure 16, a sample structure of the agent’s memory clip is presented
where the h-values are positive and probabilities during training are com-
puted by normalization of h-values. In Figure 16, we see that the range
of h-values for different categories could be quite diverse. For instance,
h-values between stimuli in category D andC are about six times bigger than
h-values between stimuli in category B and C. This means that the agent is
selected more efficiently in BC training trials and passes the criterion more
quickly, but behaves less efficiently in DC training trials and needs more
blocks of training to meet the criterion. This will affect the probabilities, as
represented in Figure 17.
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Figure 17: Transition probabilities and negative log of probabilities of the sam-
ple network in Figure 16.

Table 8: Details of Computing Derived Probabilities from the Sample Network
in Figure 16.

Computation Method A2C3 A2C1 A2C2

No condition (Figure 17)
Lowest-cost path A2, B2,C2, D2,C3 A2, B1,C1 A2, B2,C2
Min-sum value 4.4697 4.2016 1.7019
Calculated probability 0.0115 0.015 0.1823
Normalized probability 0.0549 0.0717 0.8734
h-values 1.0 1.3075 15.9229

Category based (Figure 18)
Lowest-cost path A2, B2,C2, D2,C3 A2, B2,C2, B1,C1 A2, B2,C2
Min-sum value 2.8554 2.6740 0.2625
Calculated probability 0.0575 0.069 0.7692
Normalized probability 0.0642 0.0770 0.8588
h-values 1.0 1.1989 13.3693

Viterbi (Figure 19)
Lowest-cost path A2, B3,C3 A2, B2,C1 A2, B2,C2
Min-sum value 3.0743 2.8471 0.2625
Calculated probability 0.0462 0.0580 0.7692
Normalized probability 0.0529 0.0664 0.8807
h-values 1.0 1.2551 16.6406

Suppose that the testing trial has A2 as the sample stimulus and C3,C1,C2

as the action stimuli. As reported in Table 8, the path with the lowest cost
could pass through a category more than once, say, A2, B2,C2, D2,C3. Note
that the reported simulation results, which we referred to as Dijkstra’s al-
gorithm, are similar to Figure 17, that is, without any extra conditions.
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Figure 18: Transition probabilities and negative log of probabilities of the sam-
ple network in Figure 16 when category is taken into account.

One might argue that the probabilities must be marginalized based on
the categories. In other words, the agent first targets a specific category,
then, at the second level, chooses a member of that category. Therefore, the
probability must be normalized for each category. In Figure 18, a category-
based computation in which probabilities are marginalized is presented.

From Table 8, we observe that the calculated probability vector of
category-based computation is higher than the previous case in general,
but comparison of the normalized vectors shows that the probability of the
correct choice, A2C2, in category-based computation is slightly less than its
counterpart. The explanation is that in a category-based version, a multi-
plicative factor, which represents the probability of choosing each different
category, is removed. This affects the probabilities and therefore produces
different final distributions. Consider that if the h-values for different cate-
gories are in the same range, which is what we expect, this multiplicative
factor would be the same for all the actions and the normalized probabili-
ties would be the same. In the category-based calculation of probabilities,
the lowest-cost path could pass through a category more than once, similar
to the first case.

The third scenario, which we refer to as a Viterbi algorithm, avoids pass-
ing a category more than once and is based on a trellis diagram from the
network. The diagram is an ordered graph from a starting point to the des-
tination layer. The trellis diagram for EPS is configured for each trial and
has cs as the starting point; the layers consist of members of passing cat-
egories, and the destination layer is At . The strategy to find the passing
categories from cs to ca is simply to find the shortest path from cs to ca, keep
the members of categories with at least a member in the path, and remove
other nodes and edges that have the opposite direction. Figure 19 shows the
probabilities on the trellis diagram and negative log values.
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Figure 19: Transition probabilities and negative log of probabilities of the sam-
ple network in Figure 16 when a trellis diagram based on the trial is made first,
before computing the probabilities.

The probability of a correct match, A2C2, from the Viterbi scenario, is
slightly higher than the previous methods. The explanation is that by re-
moving some edges and not allowing passage through a category twice,
the lowest-cost path in wrong options might be removed.

After finding the probabilities for all the possible actions a ∈ At , we can
compute h-values of the connections using equation B.1.

h(t)(cs, ca) = p(t)(ca|cs)
pmin

h0, (B.1)

where pmin is the minimum of achieved probability where we set its h-value
equal to h0. Note that if we use the softmax function to compute probabili-
ties, converting probabilities to the h-values is through equation B.2,

h(t)(cs,At ) = 1
β

[
log(p(t)(ca1 |cs)) · · · log(p(t)(cam |cs))

]
− [hmin + h0, · · · hmin + h0] , (B.2)

where hmin is the minimum value of the computed h-values, which is used
to put the minimum value of h-values to h0.

It is worth mentioning that the final results in the max-product scenario,
in spite of the chosen strategy for calculation of probabilities, are quite sim-
ilar. However, the selected method affects the interpretation of the mecha-
nism of the agent’s memory in order to make a decision on a derived rela-
tion, which might be of interest in the EPS model.
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Abstract
The Stochastic Point Location (SPL) problem Oommen is a fundamental learning problem that has recently found a lot of
research attention. SPL can be summarized as searching for an unknown point in an interval under faulty feedback. The
search is performed via a Learning Mechanism (LM) (algorithm) that interacts with a stochastic Environment which in
turn informs it about the direction of the search. Since the Environment is stochastic, the guidance for directions could be
faulty. The first solution to the SPL problem, which was pioneered two decades ago by Oommen, relies on discretizing the
search interval and performing a controlled random walk on it. The state of the random walk at each step is considered to
be the estimation of the point location. The convergence of the latter simplistic estimation strategy is proved for an infinite
resolution, i.e., infinite memory. However, this strategy yields rather poor accuracy for low discretization resolutions. In
this paper, we present two major contributions to the SPL problem. First, we demonstrate that the estimation of the point
location can significantly be improved by resorting to the concept of mutual probability flux between neighboring states
along the line. Second, we are able to accurately track the position of the optimal point and simultaneously show a method by
which we can estimate the error probability characterizing the Environment. Interestingly, learning this error probability of
the Environment takes place in tandem with the unknown location estimation. We present and analyze several experiments
discussing the weaknesses and strengths of the different methods.

Keywords Stochastic Point Location (SPL) ·Mutual probability flux · Flux-based Estimation Solution (FES) · Last
Transition-based Estimation Solution (LTES) · Stochastic Learning Weak Estimation (SLWE) · Estimating environment
effectiveness

1 Introduction

Stochastic Point Location (SPL) is a fundamental
optimization problem that was pioneered by Oommen
[20] and ever since has received increasing research
interest [11, 28]. A Learning Mechanism (LM) attempts
to locate a unique point λ∗ in an interval while the
only assistance comes from the information provided by
a random Environment (E) which informs it, possibly
erroneously, whether the location is to the left or to the
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anis.yazidi@oslomet.no
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right of the point. The probability of receiving the correct
response from Environment is basically fixed and unknown.
The SPL problem, which was addressed by Oommen and
a few others [11, 13, 20–22, 28], is indeed a general
optimization framework where a large class of optimization
problems could be modeled as an instantiation of it, see [31]
for a survey of all the reported solutions to the SPL.

The assumption that the parameter or point location
in the SPL setting does not change over time is not the
case in many real-life dynamic systems such as web-based
applications [10]. Indeed, the probability of receiving the
correct response from Environment might be unknown and
even non-stationary. Sliding window [12] is a traditional
strategy for estimation in non-stationary Environments.
However, choosing the appropriate window size would be
crucial. When the window size is too small, the estimation
will be poor. Contrarily, if the window size is rather large,
the estimation accuracy will be degraded.

It is worth mentioning that Continuous Point Location
with Adaptive Tertiary Search (CPL-ATS) strategy [23] is
another method of solving SPL which systematically and
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recursively searches for sub-intervals that λ∗ is guaranteed
to reside in, with an arbitrarily high probability. A series
of guessing which starts with the mid-point of the given
interval estimates the point location and repeats until the
requested resolution is achieved. The given interval is
partitioned into three sub-intervals where three LA work
in parallel in each sub-interval and at least one of them
will be eliminated from further search. So, it is crucial
in CPL-ATS to construct the partition and elimination
process. This method is further developed into the CPL
with Adaptive d-ary Search (CPL-AdS) Strategy [24] where
the current interval is partitioned into d sub-intervals,
instead of three. A larger d results in faster convergence,
as a consequence the decision table of elimination process
becomes more complicated. An extension of the CPL-
AdS scheme, which could also operate in non-stationary
environments, is presented in [11]. The decision formula
is proposed to modify the decision table in [24] to resolve
certain issues of original CPL-AdS scheme.

In [35] an SPL algorithm based on Optimal Computing
Budget Allocation (OCBA), named as SPL-OCBA, is
proposed. SPL-OCBA employs OCBA and the historical
sample information to find the location of a target point.
Zhang et al. [33] integrated SPL with Particle Swarm
Optimization (PSO)- which is a popular swarm intelligence
algorithm- in a noisy Environment, in order to alleviate
the impacts of noise on the evaluation of true fitness and
increase the convergence speed.

In order to fasten the SPL scheme, the work reported
in [26] proposes to use the last two transitions of the SPL
to decide whether to increase or decrease the step size.
Intuitively, two suggestions from the Environment in a row
for going left or right will increase the step size. On the
other hand, the step size is decreased whenever the SPL
oscillates between two sates; this might be an indication that
the optimal point is located between those two states.

In [7], SPL is modified in accordance with the classical
Random Walk-based Triple level Algorithm (RWTA),
where Environment provides three kinds of responses, i.e,
right, left or unmoved.

A generalization of the hierarchical SPL scheme [28] to
the case of deceptive Environment was proposed in [34]. In
order to deal with the deceptive nature of the Environment
and still be able to estimate the optimal location, the original
tree structure found in [28] was extended by a symmetric
tree rooted at the root node and it was shown that the
SPL will converge to a leaf node in that symmetric tree in
case the Environment is deceptive, while it will converge
to the leaf node in the original tree if the Environment is
informative i.e., not deceptive.

There is a wide range of scientific and real-life problems
that can be modeled as the instances of SPL problem,
such as adaptive data encoding, web-based applications, etc.

[10]. In [6], Granmo and Oommen presented an approach
for solving resources allocation problems under noisy
Environment using a learning machine that is basically
an SPL. The basic SPL version is used to determine
the probability of polling a resource among two possible
resources at each time instant. The scheme was also
generalized to handle the case of more than one material
using an hierarchical structure. The paradigm has been
applied to determining the optimal polling frequencies of a
web-page and to solving sampling estimation problems with
constraints [5].

In [30], it is proposed to apply the SPL paradigm to solve
the stochastic root finding problem which is a well-known
stochastic optimization problem. The classical solution to
solve this problem is based on stochastic approximation.
Yazidi and Oommen show that it is possible to model
the problem as variant of the SPL with adaptive d-ary
search.

Recently, Yazidi et al. [29] showed that quantiles can
be estimated using an SPL type search. The scheme has
computational advantages as it uses discretized memory
and it is able to adapt to dynamic environments. Another
recent application of the SPL [23] is estimating the
optimal parameters of Distance Estimation Functions
(DEF). Distance Estimation (DE) [9] is a classical problem
where the aim is to estimate an accurate value for the
real (road) distance between two points which is typically
tackled by utilizing parametric functions called Distance
Estimation Functions. The authors use the Adaptive Tertiary
Search strategy [23], to calculate the best parameters for
the DEF. The proposed method uses the current estimate
of the distances, the feedback from the Environment, and
the set of known distances, to determine the unknown
parameters of the DEF. It is suggested that SPL is a better
way to determine DEF parameters rather than the traditional
Goodness of-Fit (GoF) based paradigm [9].

Furthermore, SPL can also be used to find the appropriate
dose in clinical practices and experiments [15].

A possible interesting application, which we focus on in
our ongoing research, is to determine the difficulty level
of a cognitive training method by SPL. One of the key
challenges, faced by many learning methods, is to find the
cognitive level of a participant in order of designing suitable
level of training. To the best of our knowledge, in most
legacy methods, alternating between different training levels
and scenarios is simply done by increasing the difficulty
if the task is managed, once or over a set of repeated
iterations, or by decreasing/fixing the difficulty level if
the task is not managed. This problem could be modeled
by SPL with certain conditions, such as non-stationary
point location, since the manageable difficulty level will
change as time goes for trained participant, and unknown
certainty/probability of the results. Because there are many
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factors that might affect the response to a training test that
are not related to the real ability of the participant. For
instance, Titrated delayed matching-to-sample (TDMTS)
method, which is used by behaviour analysts, could easily
be modeled as a SPL problem. TDMTS can be used to
study important variables for analyzing short-term memory
problems [1].

Spaced Retrieval Training (SRT) [16] is also a method of
learning and retaining target information by recalling that
information over increasingly longer intervals; a method
which is especially used for people with dementia [2]. For
progressive diseases like dementia, it is so important to
estimate the ability level, i.e. point location in SPL, as
quickly as possible, since the ability will rapidly change
during time, affected by training, disease, and patient’s
condition.

This paper is partially based on our previous work
published in [18]. In [18], we show that the SPL problem
can be solved by introducing two key multinomially
distributed random variables and tracking them using
the Stochastic Learning Weak Estimator (SLWE) method.
SLWE [25] figures among the most prominent estimators
for non-stationary distributions. We proposed to integrate
the SLWE as the inherent part of a more sophisticated and
accurate solution for the SPL. The recursive updated form
of the SLWE makes it a viable strategy in our problem since
the tracked distribution in the case of SLWE is updated
incrementally. Therefore, our strategy for estimation of
point location revolves around tracking the distribution
at each time step and estimating the point based upon
it. We applied different statistical operators: maximum,
expectation, and median on the estimated probability
vectors to obtain our estimates. The results indicate that, the
estimates obtained from these methods are smoother than
those obtained from legacy SPL solutions and can track
the changes more efficiently. The results, also, confirm that
using the concept of mutual probability flux between states,
according to which transitions are considered as the events
of multinomially distributed random variable, is a superior
alternative to [20]. We name the contribution as Flux-based
Estimation Solution (FES). In the simulation part of initial
work reported [18], Environment effectiveness fixed to p =
0.7 and the resolution fixed to N = 16. It was shown there
that the estimated error reduced up to 75%. In the current
paper, we do not fix the resolution and consider the case
where we can tune the resolution. A new contribution in this
paper is to introduce the Last Transition-based Estimation
Solution (LTES). This estimator is much simpler than FES
and in the case that we have no constraint on the resolution,
LTES could estimate the point location equally well with
FES.

The Environment effectiveness, i.e. probability of correct
answer, is unknown and might vary over time. As the second

contribution of this paper, we estimate the probability in
tandem with the unknown location estimation.

The remainder of this paper is organized as follows. In
Section 2, the SPL problem is defined formally. Section 3
is devoted to presenting our solution for both estimating
the point location as well as the Environment effectiveness
probability. In this perspective, Section 3.1 introduces the
concept of mutual probability flux which is formally proved
to be a stronger method compared with the last visited
state of the Markov Chain. In Section 3.2, we introduce
our estimation approach reckoned as Flux-based Estimation
Solution (FES) that is based on a subtle usage of the
concept of flux probability. We show that the LTES is a
special case of the FES method, and a comparison between
the LTES with the FES method is provided at the end of
this part. Section 3.3 deals with the related fundamental
problem of estimation of the Environment effectiveness. To
evaluate the behavior of estimators, extensive simulation
results based on synthetic data are presented and discussed
in Section 4. Experiments based on real-life data related to
online tracking of topics are presented in Section 5. Finally,
we drew final conclusions in Section 6.

2 Stochastic point location problem
in a dynamic setting

This problem considers that the learning mechanism (LM)
moves within [0, 1] interval and attempts to locate a
point (0 ≤ λ∗(n) ≤ 1) that may change over time
n. The Environment E is considered to be informative;
LM receives the right direction to the point location with
probability p∗(n) > 0.5. This probability of receiving
a correct response, which reflects the “effectiveness” of
the Environment, is unknown by LM and assumed to be
varying.

As aforementioned, we intend to track λ∗(n) in an
efficient manner. We follow the model presented in [20] and
discretize the interval and perform a controlled randomwalk
on it, characterized by λ(n). More precisely, we subdivide
the unit interval into N + 1 discrete points

{0, 1/N , 2/N , · · · , (N − 1)/N , 1},

where N is called the resolution of the learning scheme. Let
λ(n) be the current location at time step n:

– If E suggests increasing λ(n):
λ(n + 1) = min(λ(n)+ 1/N , 1)

– If E suggests decreasing λ(n):
λ(n + 1) = max(0, λ(n) − 1/N )

Hereafter, the binary function E(n, i) stands for the
Environment answer at step n and location λ(n) = i/N ,
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where E(n, i) = 1 refers to the Environment suggestion to
increase λ(n) and E(n, i) = 0 refers to the Environment
suggestion to decrease λ(n). Let Z be an integer value
between 0 and N − 1, based on above rules, if Z/N ≤
λ∗(n) < (Z + 1)/N at time n we have:

Pr(E(n, i) = 1) = p∗(n) i f 0 ≤ i ≤ Z

= q ∗(n) i f Z < i ≤ N

Pr(E(n, i) = 0) = q ∗(n) i f 0 ≤ i ≤ Z

= p∗(n) i f Z < i ≤ N (1)

Where q ∗(n) = 1 − p∗(n).
Based on the results presented in [20], in the stationary

case in which λ∗(n) = λ∗, this random walk will converge
into a value arbitrarily close to λ∗, when N → ∞ & n →
∞. However, the above asymptotic results are not valid for
the non-stationary SPL. In practice, we might experience
some constraints, both on time n ≤ T and on the resolution
N ≤ R. Throughout the rest of this paper, we pursue better
estimates for λ∗(n) than λ(n).

3 Estimation strategies

In this section, we first show the superiority of the Last
Transition-based Estimation Solution (LTES) over the last
location estimate. Then, a multinomially distributed random
variable is considered. We track its probability distribution
with SLWE method [25] and estimate the λ∗(n) from
the estimated distributions. Then, we explain how we can
estimate the probability p∗(n) using the estimation of λ∗(n).

In [18], we showed that tracking probability distribution
for different state transitions, instead of the point locations,
yields a better performance. The reason is that the
estimation by Markov chain will have many transitions
around the true and unknown λ∗(n). In the following, we
prove that using the concept of mutual probability flux is
a stronger tool for solving the SPL problem than using the
current point location. In the proof, we consider the static
case, i.e. λ∗(n) = λ∗.

3.1 Superior accuracy with the concept of mutual
probability flux

For simplicity, let xi = i/N for i = 0, 1, . . . , N . So,
the Markov chain states will be the possible value of
xi for 0 ≤ i ≤ N which belongs to the set of
values {0, 1/N , 2/N , · · · , 1}. Let πi be the stationary (or
equilibrium) probability of the chain being in state xi . Then,

the equilibrium probability distribution vector will be # =
[π0,π1, · · · ,πN ]T .

We know that the Markov chain is an instantiation of the
birth-death process.1 It is also known that, such a process
is a time reversible Markov chain, i.e. satisfies the detailed
balance equation:

πi Mi, j = π j M j,i for all i ̸= j

where Mi, j ’s are transition probabilities. For a complete
overview about time reversibility, we refer the reader to an
excellent book by Kelly [14]. The following simple proof
shows time reversibility of our Markov chain.

If |i − j | > 1 for 0 ≤ i, j ≤ N , i.e. xi and x j are
not adjacent, then the detailed balance equation is obviously
true. For a given i , we can divide the states into two parts,
L = {xk |k ≤ i} and R = {xk |k > i}. Since the Markov
chain is a birth-death chain, the only passage between the
two parts is the transition xi to xi+1 or xi+1 to xi . The flow
from L to R is πi Mi,i+1 and from R to L is πi+1Mi+1,i .
Since # is stationary, the total flow must be 0, which
concludes what is desired:

πi Mi,i+1 = πi+1Mi+1,i . (2)

Let x+i denotes the event according to which the Markov
chain makes a transition from xi to xi+1 or from xi+1 to xi .
The informed reader would observe the latter event can be
related to the concept of flux probability [19, Chapter 8.4].
In fact, in the literature, the flux probability between two
neighboring states xi and xi+1 is given by Mi,i+1πi which
represents the absolute probability of observing a transition
from xi to xi+1. We can see that the probability of x+i
can be described as the sum of two flux probabilities;
namely the flux probability corresponding to transiting from
xi to xi+1, and the flux probability of transiting in the
opposite direction from state xi+1 to xi . In other words, the
probability of the event x+i , which is shown by π+

i , equals
to the following sum

π+
i = Mi,i+1πi + Mi+1,iπi+1. (3)

We call this quantity as mutual probability flux between
states xi and xi+1. In the light of this explanation, we call
#+ = [π+

0 ,π+
1 , · · · ,π+

N−1]T the mutual flux probability
vector between two neighboring states.

Now we intend to investigate the relation between # and
#+. Let xZ ≤ λ∗ < xZ+1 and e = p

q > 1.2 As a result

1Since the only possible transitions are moving one state to the left or
right.
2Suppose the Environment is stationary; λ∗(n) = λ∗, p∗(n) = p >
0.5, and q ∗(n) = q = 1 − p.

2702



On solving the SPL problem using the concept of probability flux

of (2) and referring to relations in (1), the following balance
equations hold.

πi = e.πi−1 whenever i ≤ Z (4)

In the case i ≤ Z we have Mi,i+1 = p and Mi+1,i = q .

πi =
πi−1

e
whenever i > Z + 1 (5)

In the case i > Z + 1 we have Mi,i+1 = q and Mi+1,i = p.
Finally, since we have MZ ,Z+1 = p and MZ+1,Z = p:

πZ+1 = πZ (6)

These relations show that values are increasing from π0 to
πZ and decreasing from πZ+1 to πN ; and therefore, πZ and
πZ+1 take the maximum value.

Let λtr(n) be the mean of last two states, i.e. λtr(n) =
λ(n−1)+λ(n)

2 . In this case, π+
i would be the stationary prob-

ability of λtr(n) chain being in transition x+i . We can easily
see that the probabilities of #+ = [π+

0 ,π+
1 , · · · ,π+

N−1]T
are larger for indexes around the λ∗.

Whenever i < Z , using (3), we have

π+
i = pπi + (1 − p)πi+1 = p

q
p
πi+1 + q πi+1.

and therefore

π+
i = 2q πi+1 whenever i < Z . (7)

In the case i = Z we have:

π+
Z = pπZ + pπZ+1 = 2pπZ , (8)

and finally whenever i > Z

π+
i = q πi + pπi+1 = q πi + p

q
p
πi ,

π+
i = 2q πi whenever i > Z . (9)

Up to this point, we have showed the relation between #

and #+. Now, to show the convergence of #+, we just need
to prove π+

Z is greater than π+
i for i ̸= Z (i.e. i < Z and

i > Z ).

Case 1: i < Z Based on (4), (5), and (6), we know that
πZ > πi for i < Z . We also know that 2q < 1, when
p > 1/2; and therefore, 2q πi < πZ . However, we showed
that 2q πi = π+

i , and as a result:

π+
i = 2q πi+1 < πZ < 2pπZ = π+

Z

Case 2: i > Z Again, we observe that πZ > πi for i > Z .
So, we have

π+
i = 2q πi < πi < πZ < 2pπZ = π+

Z .

Thus, we have proved that π+
i < π+

Z for i ̸= Z , which
means that, the transition has higher probabilities at π+

Z and
lower values at other locations.

Since π+
Z is greater than πZ , we expect that the λtr(n)

estimator, or LTES, performs better than λ(n). This can be
investigated by comparing the expected estimation error of
SPL and LTES. Let ESPL be the expected estimation error
for SPL and let ELTES be the expected estimation error for
the LTES. For the sake of simplicity, we suppose that λ∗ is
in the middle of the interval[Z/N , (Z+1)/N ]which means
λ∗ = Z+(Z+1)

2N .

ESPL =
∑

i

πi | λ∗ − xi |

=
∑

i

πi |
Z + (Z + 1)

2N
− i

N
|

=
∑

i ̸=Z

πi |
Z + (Z + 1)

2N
− i

N
|

+πZ | Z + (Z + 1)
2N

− Z
N

|
(10)

On the other hand for the LTES we have

ELTES =
∑

i

π+
i | λ∗ − x+i |

=
∑

i

π+
i | Z + (Z + 1)

2N
− i + (i + 1)

2N
|

=
∑

i ̸=Z

π+
i | Z + (Z + 1)

2N
− i + (i + 1)

N
|

+π+
Z | Z + (Z + 1)

2N
− Z + (Z + 1)

2N
|

=
∑

i ̸=Z

2q πi |
Z + (Z + 1)

2N
− i + (i + 1)

2N
| (11)

As for large N , 2i+1
2N ≈ i

N , we can write

ELTES =
∑

i ̸=Z

2q πi |
Z + (Z + 1)

2N
− i

N
| .

From the above equations we get:

ESPL >
∑

i ̸=Z

πi |
Z + (Z + 1)

2N
− i

N
|

> 2q

⎛

⎝
∑

i ̸=Z

πi |
Z + (Z + 1)

2N
− i

N
|

⎞

⎠

= ELTES (12)
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The last inequality is due to the fact that 2q < 1.
Therefore we conclude that the expected estimation error

for LTES is smaller than SPL for large enough N . The
results in Section 4 confirm the discussion above.

3.2 Flux-based estimation solution (FES)

Let X+(n) denote a multinomially distributed variable over
the possible transitions x+i , i = 0, . . . , N − 1; where the
concrete realization of X+(n) at time step n is λtr(n). Please
note that the distribution of X+(n) can be explained using
the mutual flux probability vector #+(n). The portion of
transitions defined as P(X+(n) = x+i ) = π+

i (n), i =
0, . . . , N − 1.

The SLWE method estimates the probabilities

#+(n) = [π+
0 (n),π+

1 (n), . . . ,π+
N−1(n)]T

by maintaining a running estimate S(n) = [s0(n), s1
(n), · · · , sN−1(n)]T of #+(n) where si (n) is the estimate
of π+

i (n) at time n. The updating rule is (the rules for other
values of s j (n), j ̸= i , are similar):

si (n + 1) ← αsi (n)+ (1 − α) when λtr(n) = x+i
← αsi (n) when λtr(n) ̸= x+i (13)

0 < α < 1 is a user-defined parameter for updating the
probability distribution. The intuition behind the updating
rule is that if λtr(n) ̸= x+i we should decrease our estimate
si (n) which is given by the second part of the updating
rule. Similarly, if λtr(n) = x+i we should increase our
estimate which is given by the first part of the updating
rule.

It is worth mentioning that in [25], X (n) = X ,
i.e. it is not modeled as a function of time and as a
result #(n) = [π0,π1, · · · ,πN ]T is time-invariant. The
theorems and results are also proven in the asymptotic case
when n → ∞ which is in contradiction with the non-
stationary assumption for Environment. It is discussed that
in practice the convergence takes place after a relatively
small value of n. For instance, if the Environment switches
its multinomial probability vector after 50 steps, the SLWE
could track this change. However, we prefer to use the
notation in a way that the point location, and thereafter,
the multinomially probability vector is clearly shown to
be non-stationary. SLWE converges weakly, independently
of α value, however the rate of convergence is a function
of α. Based on previous section where we showed πi <

πZ , i ̸= Z , and as S(n) converges to #+(n), we are able to
estimate the point location, λ∗(n), by finding the maximum
probability, i.e.

z = argmaxi (si (n))

λmax(n) = x+z (14)

Note that the maximum value refers to a pair that the LM
transits to the most. For non-unique z, the last visited pair
with the max probability value is chosen (see Algorithm 1).

As n → ∞, and for appropriate choices of α → 1;
S(n) → #+(n). Thus, (14) reduces to z = Z , as we know
that π+

Z is the largest component in the vector #+(n). Then,
the error will be ≈ 0 as time goes to infinity.

As a side remark, if α ≤ 0.5 and λtr(n) = x+i , then
si (n) ≥ 0.5 for event x+i . In other words, λmax(n) = λtr(n)
if α ≤ 0.5. Because of this, we set α > 0.5 in our
simulations to avoid repeating the same estimation.

3.2.1 LTES as a special case of FES

The informed reader would remark that the FES scheme
needs to keep track of the maximum component of the
mutual flux probability vector. For each component, the
middle point of the corresponding pair of states is used as
an estimate of the point location. A special case of the FES
method is to operate without memory, and in this case, the
maximum component of the mutual flux probability vector
will simply correspond to the middle point of the last visited
pair of states. This is also true regarding Algorithm 1, where
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we see that if we replace α by 0, then FES reduces to the
LTES algorithm.

A potential strength of LTES (λtr) is that we only need
to tune the parameter, namely N , while the FES estimator
(λmax ) contains two parameters N and α. However, both
parameters are related to how rapidly the estimator adjusts
to changes in the Environment. This suggests that if
we are able to tune over N , the LTES approach and
Oommen’s method could perform equally well as the more
sophisticated algorithm with weak estimation.

In the following, we show how to estimate the p∗(n)
using λtr and weak estimators. The Oommen estimate i.e.
λ(n) can not be a basis for estimation of p∗(n). The reason
is that we increase or decrease the probability by comparing
the estimation of point location λ̂(n) and Environment
suggestion E(n, i) at point λ(n). In Oommen’s method
since λ̂(n) = λ(n) the probability estimation always would
be 0.5.

3.3 Estimation of environment effectiveness
probability

To estimate p∗(n) based on the estimation of λ∗(n), we use
simple binomial weak estimator. Let λ̂(n) be the estimation
of λ∗(n). We adjust over γ which is the parameter for
binomial weak estimator (see Algorithm 2). Since the
probability assumed to change over[0.5, 1], the initial guess
of the probability is set to p̂(0) = 0.75.

– If (λ(n) < λ̂(n) and E(n, i) = 1) OR (λ(n) > λ̂(n)
and E(n, i) = 0):

p̂(n) = 1 − γ (1 − p̂(n − 1))

– Else if (λ(n) < λ̂(n) and E(n, i) = 0) or (λ(n) > λ̂(n)
and E(n, i) = 1):

p̂(n) = max(0.5, γ p̂(n − 1)) (15)

– Else if (λ(n) = λ̂(n)):

p̂(n) = p̂(n − 1)

Basically, the probability p̂(n) increases by a multiplica-
tive parameter γ if the Environment direction E(n, i) agrees
with the estimation of point location, λ̂(n), and vice versa;
the opposite probability (1 − p̂(n)) increases by a mul-
tiplicative factor γ if they disagree. Since we know that
p∗(n) change over [0.5, 1], we restrict our estimations to
this domain by setting the lower bound 0.5 in (15).

4 Experimental results

In this section, we resort to simulation experiments to
evaluate the performance of the estimators suggested in
this paper. As mentioned before, both λ∗(n) and p∗(n),
which are not known by LM, could be either constant
or dynamic. In this regard, there are many possibilities
to define the Environment in which two general types
of Environments are considered. Those Environments can
show the characteristics of estimators in the best manner.

– Both λ∗(n) and p∗(n) change after a fixed amount
of time. So their values are fixed for a while until a
sharp change happens. We use the sample abbreviation
SWITCH-1000-10000 for this type, which means λ∗(n)
changes after 1000 steps and p∗(n) changes after 10000
steps. The next value of λ∗(n) is randomly chosen from
[0, 1], and for p∗(n) the random value is chosen from
[0.5, 1].

– Both λ∗(n) and p∗(n) vary gradually as continuous
functions of time. We consider the changes as sine
functions. A sample abbreviation for this type would
be SINE-1080-10080, which means that λ∗(n) has a
period of 1080 and p∗(n) has a period of 10080. More
precisely, λ∗(n) = 0.5 + 0.5 sin((n/540)π) where the
sine argument changes by π/180 radians every 3 steps.
Therefore, period equals 3 · 360 = 1080. Moreover,
p∗(n) = 0.75 + 0.25 sin((n/5040)π) where the sine
argument changes by π/180 radians every 28 steps; so
the period equals 28 · 360 = 10080.

The key aspects of presented estimators can be discussed
through eight cases that highlight the salient features of our
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Fig. 1 SWITCH-1000-1000. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

scheme. For the sake of clarity, these cases are classified
into seven headings which are introduced briefly in the
following.

The first Section 4.1 presents the initial settings when
both λ∗(n) and p∗(n) change moderately. Cases SWITCH-
1000-1000 and SINE-1080-1080 are presented in this part
in Figs. 1 and 2 respectively. Next, in Section 4.2 the
effect of faster changes in λ∗(n) and p∗(n) are addressed
through cases SWITCH-100-100 (Fig. 3) and SINE-360-
360 (Fig. 4). In the third Section 4.3 the effect of changing

rate of p∗(n) on estimating λ∗(n) in SWITCH dynamic
is examined. To do so, the changes of λ∗(n) are fixed
on 1000, and two alternative cases SWITCH-1000-100
(Fig. 5) and SWITCH-1000-10000 (Fig. 6) are compared
with SWITCH-1000-1000 (Fig.1). Additionally, in Fig. 7
a trace plot for tracking λ∗(n) via LTES (λtr) is presented
and the behavior of the estimator is discussed through
three cases SWITCH-1000-100, SWITCH-1000-1000, and
SWITCH-1000-10000. Table 1 summarizes the choices of
tuning parameters resulting into the minimum error for λtr

Fig. 2 SINE-1080-1080. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Fig. 3 SWITCH-100-100. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

and λmax to the SWITCH cases. The fourth Section 4.4
focuses on the SINE dynamic and presents the results for
the effect of changing rate of p∗(n) on estimating λ∗(n).
Similarly, the periods of sine function at λ∗(n) are fixed
on 1080, and two alternative cases SINE-1080-360 (Fig. 8)
and SINE-1080-10080 (Fig. 9) are compared with SINE-
1080-1080 (Fig. 2). Table 2 summarizes the same data as
Table 1 for SINE cases. Fifth Section 4.5 is devoted to study

the effect of relation between λ∗(n) and p∗(n) dynamics on
the estimators. Figure 10 depicts tracking λ∗(n) throughout
the two scenarios SINE-1080-1080 and SINE-1080-1080-
Shift where the second scenario has a shift in the phase
of λ∗(n). The differences in the tracking performance are
discussed in detail. Table 3 is assisting the discussion in
this section. Estimation of Environment effectiveness is
addressed in the last two sections. In Section 4.6, Figs. 11

Fig. 4 SINE-360-360. In each
of the three sub-figures, one of
the max, med, and exp along
with the Oommen’s method
λ(n) and the transition λtr are
depicted
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Fig. 5 SWITCH-1000-100. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted

and 12 present the estimation error for various SWITCH
and SINE cases respectively. Moreover, Table 4 summarizes
the choices of tuning parameters resulting into the minimum
error while Environment effectiveness is estimated. In order
to compare the effect of tuning parameters, in Table 4, the
estimation error for p∗(n) with N = 5 and α = 0.9 is
reported as well. Finally, Section 4.7 analyses the results
of estimation of Environment effectiveness for the tracking
process depicted in Figs. 13 and 14.

It is worth mentioning that there are two main other
approaches to solve the SPL problem which we do not
compare with here. The first approach was pioneered by
Yazidi et al. [28] and is based on arranging the search space
into a tree structure. The second main approach is the CPL-
ATS strategy [23, 24] and is based on diving the search

interval into d sub-intervals and then recursively eliminating
at least one sub-interval, thus shrinking the search space. We
did not compare with these methods because in contrast to
our solution and to Oommen’s original SPL solution [20],
much more queries are required per iteration. In fact, when
it comes to the hierarchical solution [28], three queries are
required in the case of a binary tree structure while the
CPL-ATS strategy requires as many queries as the number
d of sub-interval. Therefore, it would be inappropriate to
compare against our method and Oommen’s original SPL
which use only one query per iteration. Furthermore, the
CPL-ATS strategy suffers from the fact that is not suitable
for dynamic Environment as it eliminates irreversibly parts
of the search space at each epoch. Before proceeding to
the experimental results, it is necessary to clarify some

Fig. 6 SWITCH-1000-10000.
In each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Fig. 7 a shows how λtr tracks
λ∗(n) in case SWITCH-1000-
100. b and c show the same for
SWITCH-1000-1000 and
SWITCH-1000-10000
respectively. In all cases, a slice
of Environment from n = 60000
to n = 90000 are represented

general issues regarding the reported data and figures.
First, some figures shows the estimation error for a variety
of tuning parameters N and α. Below, we refer to this
as “error plots”. In all experiments we have considered
α ∈ [0.6, 0.7, 0.8, 0.9, 0.95, 0.99], however, in the sake of
clarity, we only depict α ∈ [0.6, 0.9, 0.95] cases in the error
plots.

Along with λmax(n) estimation, λmed(n) and λexp(n)
estimations are presented in [18] respectively as the median
and expectation of probability vector. Formally, λmed(n) and
λexp(n) are defined by

– the expected value of the X+(n) at step n

λexp(n) =
N−1∑

i=0

x+i si (n), (16)

– the median of the X+(n) at step n:

λmed(n) = x+z where z is the index satisfying:
z∑

i=0

si (n) ≥ 0.5 and
N−1∑

i=z

si (n) ≥ 0.5. (17)

Intuitively, it makes sense to estimate λ∗(n) by the most
visited transition which is given by λmax(n). However, if the
system varies rapidly, the probability vector estimate S(n)
will be quite poor. In such a case, taking the expectation
might be a more robust alternative, as given by λexp(n).

Although the main proposal of this paper is λtr(n) and
λmax(n), in order of comparison, we include error plots for
λ(n), λmed(n) and λexp(n).

The presented plots in Section 4.5, show estimation error
of p∗(n) as a function of tuning parameter γ . Since the main
objective of this paper is to track λ∗(n), and there are many

Table 1 Summary of the choices of tuning parameters resulting into minimum error for λtr and λmax in SWITCH experiments. The smallest error
value in each experiment is represented in bold font

SWITCH-
Estimator

1000–1000 100–100 1000–100 1000–10000

N Error N Error N Error N Error

Oommen(λ(n)) 65 0.06315 25 0.1069 90 0.03797 80 0.05027

LTES(λtr) 50 0.06135 20 0.10258 80 0.03671 65 0.04879

FES(λmax) α = 0.6 50 0.06098 20 0.1021 80 0.03646 65 0.04843

α = 0.7 50 0.06069 20 0.10253 80 0.03628 65 0.04806

α = 0.8 50 0.06 20 0.10349 80 0.03586 65 0.047312

α = 0.9 50 0.05914 20 0.10916 75 0.03539 65 0.04589

α = 0.95 50 0.05928 15 0.1233 75 0.0355 50 0.04521
α = 0.99 35 0.07094 10 0.20845 40 0.0406 45 0.06035
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Fig. 8 SINE-1080-360. In each
of the three sub-figures, one of
the max, med, and exp along
with the Oommen’s method
λ(n) and the transition λtr are
depicted

parameters in estimation of p∗(n), we restrict the plots to the
best choices of N in λtr, and (N and α) in λmax. However,
we added minimum estimation error for p∗(n) when N = 5
and α = 0.9 to discuss the effect of resolution on estimation
of p∗(n).

To measure the estimation error in the estimation of
λ∗(n) and p∗(n), the Mean Absolute Error (MAE) will be
used. For λ∗(n) this becomes

MAEλ = 1
T

T∑

n=1

| λ̂(n) − λ∗(n) | (18)

where T is the total number of time steps and λ̂(n) is the
estimate at time step n. Similarly, for p∗(n) this becomes

MAEp = 1
T

T∑

n=1

| p̂(n) − p∗(n) | (19)

where p̂(n) is the estimate at time step n.
Finally, to remove any Monte Carlo error in the results,

we ran a total of 100 experiments of length T = 105 for all
cases.

Fig. 9 SINE-1080-10080. In
each of the three sub-figures,
one of the max, med, and exp
along with the Oommen’s
method λ(n) and the transition
λtr are depicted
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Table 2 Summary of the choices of tuning parameters resulting in minimum error for λtr and λmax in SINE Experiments. The smallest error value
in each experiment is represented in bold font

E–NIS
Estimator

1080–1080 360–360 1080–360 1080–10080

N Error N Error N Error N Error

Oommen(λ(n)) 80 0.04791 35 0.08634 65 0.05502 40 0.09244

LTES(λtr) 80 0.04682 35 0.08425 60 0.05363 40 0.08952

FES(λmax) α = 0.6 80 0.0471 35 0.08533 60 0.05377 40 0.08937

α = 0.7 80 0.04749 35 0.08659 60 0.05398 40 0.08935
α = 0.8 75 0.0485 35 0.08965 60 0.0548 35 0.08959

α = 0.9 75 0.05106 35 0.09706 60 0.05733 35 0.09085

α = 0.95 75 0.05578 35 0.11246 55 0.06228 30 0.09474

α = 0.99 65 0.111 20 0.31157 30 0.12002 25 0.14673

4.1 Moderate changes of both λ∗(n) and p∗(n)

In this section both λ∗(n) and p∗(n) change moderately.
Figure 1 shows the estimation error as a function of
resolution for some choices of α. At any resolution, λtr has
lower estimation error than λ(n) and indeed, all the cases
λmax, λmed, and λexp perform more efficiently than λ(n) for,
at least, a specific choice of α.

We also note that, the higher resolution will not result in
a smaller error in all the cases. For instance, for λ(n), the
estimation error increases after resolution N = 65 in which
there is a minimum of errors. As it is represented in Table 1,
the minimum error for λ(n) equals e = 0.063149 when
N = 65. We reach error e = 0.061353 for λtr at resolution
N = 50. The best error for λmax is e = 0.059138 when
N = 50 and α = 0.9. The minimum error over all scenarios
is e = 0.058559 which is achieved by λmed estimator when
N = 50 and α = 0.95.

Figure 2 shows the estimation error as a function of
resolution for some choices of α for SINE-1080-1080. All
the curves have an optimum resolution point in which any
higher resolution cause higher estimation error. In the SINE-
1080-1080 case, λmax and λtr are best satisfying estimators.
λtr with minimum error e = 0.04682 at N = 80, slightly
outperforms λmax with minimum error e = 0.047095 at
(N = 80, and α = 0.6).

4.2 Fast changes of both λ∗(n) and p∗(n)

Here the effect of faster changes in λ∗(n) and p∗(n) are
addressed through cases SWITCH-100-100 and SINE-360-
360.

Figure 3 is devoted to SWITCH-100-100 that both λ∗(n)
and p∗(n) randomly switch to a new value in their domain.
As expected, comparing the error with the SWITCH-1000-
1000 case, the estimation errors are higher. From Table 1
we see that the minimum error for the estimators λ(n), λtr,

and λmax are e = 0.1069, e = 0.10258, and e = 0.1021
respectively. The minimum error in case SWITCH-100-100
equals to e = 0.1021 and is achieved by λmax when N = 20
and α = 0.6

As expected, we see that faster changing Environment
could be tracked more accurately with smaller values of
resolution and α. For instance, compare resolution N = 20
in this case, for λmax, to N = 50 in case SWITCH-1000-
1000. The same comparison between α = 0.9 and 0.6 shows
that to track faster changing Environment we must rely on
less on memory.

In Fig. 3, we observe that the best choice of α is
dependent on the resolution; for example, if N = 5, the
λmax, λmed, and λexp with α = 0.95 and α = 0.9 are superior
to the choices with α = 0.6. However N = 15, α = 0.6
would be a more desirable option.

Regarding fast changes, Fig. 4 is devoted to SINE-360-
360 in which both λ∗(n) and p∗(n) change continuously
as a sine function with period 360 degree. The minimum
error in this case equals e = 0.08425 that is achieved by
λtr at N = 35. Again, the simpler estimator λtr outperforms
λmax with minimum error e = 0.085329 when (N =
35 and α = 0.6). Note that, the λmax estimator is more
efficient than λ(n) that has minimum error e = 0.08634
when N = 35. In comparison with SINE-1080-1080, the
estimated error is higher and the best resolution is much
smaller in case SINE-360-360. Compare the best resolution
N = 35 to the case SINE-1080-1080 which equals to
N = 80. Notice that α values closer to 1, produce weaker
estimations.

4.3 Effect of changing rate of p∗(n) on estimation
of λ∗(n) in SWITCH cases

In this section the effect of changing rate of p∗(n)
on estimating λ∗(n) in SWITCH dynamic is examined.
Two alternative cases SWITCH-1000-100 (Fig. 5) and
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SWITCH-1000-10000 (Fig. 6) are compared to SWITCH-
1000-1000 (Fig.1). In Fig. 7 a trace plot for tracking λ∗(n)
through LTES (λtr) is presented and the behavior of the
estimator is discussed. Additionally, Table 1 summarizes the
choices of tuning parameters resulting into the minimum
error for λtr and λmax to the SWITCH cases.

From Fig. 5 and Table 1, we observe that estimators
perform better in SWITCH-1000-100 in comparison with
SWITCH-1000-1000. For instance, compare the minimum
error of estimator λtr in case SWITCH-1000-100 which is
e = 0.03671 for N = 80 with e = 0.06135 for N = 50 in
case SWITCH-1000-1000.

The minimum error in various settings is e = 0.03538
which is achieved by λmed estimator when N = 75 and
α = 0.9.

Figure 6 presents the case SWITCH-1000-10000 where
p∗(n) changes ten times slower than SWITCH-1000-1000.
It is observable that estimators show a better performance in
case SWITCH-1000-10000 compared with SWITCH-1000-
1000. As presented in Table 1 we see that the minimum
error for the estimators λ(n), λtr, and λmax are e = 0.05027,
e = 0.048795, and e = 0.04521 respectively. The best
estimator is λmax when α = 0.95 and N = 50.

In summary, the results, as shown in Figs. 5, 6, and
Table 1, indicate that when the Environment effective-
ness changes fast, the minimum estimation error will be
smaller. Compare minimum errors e = 0.03539 to e =
0.05914 and e = 0.04521 for cases SWITCH-1000-100,
SWITCH-1000-1000, and SWITCH-1000-10000 respec-
tively. However, the error in SWITCH-1000-10000 when
p∗(n) changes very slow is better than moderate changes in
SWITCH-1000-1000. This result is somewhat counterintu-
itive. In order to understand it, we compare the trace plots of
SWITCH-1000-100, SWITCH-1000-1000, and SWITCH-
1000-10000 together in Fig. 7.

Figure 7 shows tracking λ∗(n) under optimal choices
of parameters for λtr in order to study the impact of
Environment effectiveness on estimation of λ∗(n). For
the sake of simplicity, suppose there is a same chain
λ∗(n) in all the cases. Consider λ∗(n) along with three
Environment effectiveness chains p∗

f (n), p
∗
m(n), and p∗

s (n),
for SWITCH-1000-100 (fast changes), SWITCH-1000-
1000 (moderate changes), and SWITCH-1000-10000 (slow
changes) respectively, in which their average value are
approximately the same i.e.

1
T

T∑

t=1

p∗
f (n) ≈ 1

T

T∑

t=1

p∗
m(n) ≈ 1

T

T∑

t=1

p∗
s (n).

Consider SWITCH-1000-10000 with p∗
s (n) and let the

estimation of λ∗(n) be λ̂(n); suppose the following three
scenarios:

1. The Environment effectiveness is close to 1, see n =
60000 to n = 70000 in Fig. 7c. λ∗(n) is easily tracked
in this segment and the estimation λ̂(n) is satisfactory.

2. The Environment effectiveness is slightly distant from
1, but it is informative, see n = 70000 to n = 80000
in Fig. 7c where p∗

s (n) value is close to 0.8. Because
the information from Environment is somewhat faulty,
tracking the point location in this segment is more
difficult, but still satisfactory.

3. The Environment effectiveness has a value close to 0.5,
see n = 80000 to n = 90000 in Fig. 7c. The estimation
λ̂(n) is unsatisfactory and it is almost a random chain
with a lot of fluctuations. The reason is that estimator
does not receive new information from Environment
and after a short time λ̂(n) will deviate from λ∗(n).

In summary, we keep the well estimation in the first
segment, the estimation performance is reduced in the
second segment, but still satisfactory. Within the third
segment, possibility of error is rather high, and λ̂(n)
fluctuates at a distant point from λ∗(n). For p∗

s (n) segments
like the last one is discouraging, since we remain in an
unsatisfactory situation for a long period of time.

Alternatively, consider the Environment effectiveness
p∗
f (n), Fig. 7a. It is possible to detect segments like the

above three segments but with a much shorter length. So,
the behavior of λ̂(n) in each of them is not long lasting.
Faster changes make the behavior of estimators more like
the second segment, with fluctuations around λ∗(n).

In Fig. 7b; i.e. SWITCH-1000-1000 case, the error is
the highest among the three cases. In this case, p∗

m(n) and
λ∗(n) are changing at the same time. So, the changes of
p∗
m(n) has no positive effect on estimation of λ∗(n). The

best resolution in this case equals N = 50, which suggests
more changes than SWITCH-1000-10000 with N = 65 and
SWITCH-1000-100 with N = 80. This smaller resolution,
produces a higher error. To investigate the negative effect
of the simultaneous changes more, we run the SWITCH-
1000-1000 case where there is a 500 steps delay between
λ∗(n) and p∗

m(n) changes. That reduces the minimum error
to e = 0.05144 for N = 65, and approves the negative
effect of simultaneous changes in SWITCH cases.

The main observations in Fig. 7 are:

– Tracking λ∗(n) is heavily affected by Environment
effectiveness. In Fig. 7c, there are no fluctuations when
p∗
s (n) ≈ 1, however, when p∗

s (n) ≈ 0.8, the estimator
fluctuates more around the optimal λ∗(n), and then
when p∗

s (n) is slightly larger than 0.5 the fluctuations
are much more bigger.

– Faster changes in Environment effectiveness leads to
better estimations of λ∗(n). Note that, the rate of
changes must be regulated in a way that λ̂(n) can
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Fig. 10 SINE-1080-1080. a and
b subfigures show how the
estimation tracks λ∗(n) when
the argument of sine function is
the same by λtr and λmax ,
respectively. The c and d
sub-figures show the same when
the argument of sine function
differ by π/2

converge to λ∗(n) when Environment effectiveness is
close to 1.

– When λ∗(n) and p∗(n) changes together, it is much
harder to track λ∗(n).

– Since the average values of Environment effectiveness
in three cases are supposed to be the same, and the most
estimation error is produced in the third segment, there
is a better performance in case p∗

f (n) in total.

From Table 1, we observe that the best estimations
belong to the case SWITCH-1000-100 and estimator λmax.

4.4 Effect of changing rate of p∗(n) on estimation
of λ∗(n) in SINE cases

This section focuses on the SINE dynamic and presents the
results for the effect of changing rate of p∗(n) on estimating
λ∗(n). Two alternative cases SINE-1080-360 (Fig. 8) and
SINE-1080-10080 (Fig. 9) are compared with SINE-1080-
1080 (Fig. 2), and Table 2 summarizes the same data as
Table 1 for SINE cases.

As reported in Table 2, the best estimation error for
case SINE-1080-360 (Fig. 8) is achieved through λtr at
N = 60 which equals to e = 0.05363; compare to the

best estimation error for SINE-1080-1080 that equals e =
0.04682. In contrast to the SWITCH case, we see that faster
changes of probability does not result in smaller estimation
errors. We later explain that along with the rate of changes,
another factor which plays a role is the phase of changes.
In SINE-1080-1080 both λ∗(n) and p∗(n) are in phase
but in SINE-1080-360 they have different periods and can
not be in phase. The effect of this will be addressed in
Section 4.5 in details. The final case, SINE-1080-10080 in
Fig. 9, provides a more clear insight.

In SINE-1080-10080, the changes are asymmetric and
the Environment effectiveness varies slower. The minimum
estimation error equals e = 0.08935 and occurs for λmax
at (N = 40,α = 0.7). In this case, we observe that λmax

estimator slightly outperforms λtr. The minimum error for
λtr is e = 0.08952 at N = 40. Moreover, λexp results
the best minimum error, e = 0.08835 when N = 35 and
α = 0.6

By comparing SINE-1080-10080 with SINE-1080-1080
and SINE-1080-360, we observe that its estimation error is
the weakest.

If only SINE-1080-360 and SINE-1080-10080 are
compared with together, we detect a better estimation at

Table 3 Summary of SINE-1080-1080 alternatives

n range θ range λ∗(n) range p∗
1(n) range p∗

2(n) range

n1 − n2 (2kπ + π/4) − (2kπ + 3π/4) [0.85, 1] [0.93, 1] [0.57, 0.93]
n2 − n3 (2kπ + 3π/4) − (2kπ + 5π/4) [0.15, 0.85] [0.57, 0.93] [0.93, 1]
n3 − n4 (2kπ + 5π/4) − (2kπ + 7π/4) [0, 0.15] [0.5, 0.57] [0.57, 0.93]
n4 − n5 (2kπ + 7π/4) − (2(k + 1)π + π/4) [0.15, 0.85] [0.57, 0.93] [0.5, 0.57]
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Fig. 11 Estimation of p∗(n)
with binomial weak estimation
via two alternative choices of
λ∗(n) estimations (λmax and λtr)
for SWITCH-1000-1000 a,
SWITCH-100-100 b,
SWITCH-1000-100 c, and
SWITCH-1000-10000 d

faster changing Environment effectiveness. While SINE-
1080-1080 is not following this hypothesis. In contrast
to SWITCH cases, where moderate changes of p∗(n)
in SWITCH-1000-1000 show the weakest performance,
moderate changes of p∗(n) in SINE-1080-1080 show the
best results. This suggests that another factor affects the
estimation. Later in Section 4.5, Fig. 10, we explain it
through the assessment of two different trace plots for
SINE-1080-1080 case.

We have collected the best parameter values and resulted
minimum errors of λ(n), λtr, and λmax in Table 2. The
best estimations belong to the case SINE-1080-1080. Here,
LTES estimator (λtr) is the best estimator.

4.5 The relation between λ∗(n) and p∗(n) changes
and the estimation performance

To study the effect of the relation between λ∗(n) and
p∗(n) dynamics on the estimators, we consider the case
SINE-1080-1080 that both λ∗(n) and p∗(n) are changing
according a sine curve. So, we re-run the SINE-1080-
1080 case when the arguments of sine functions for λ∗(n)
and p∗(n) differ by π/2. More formally, what we have
reported on Fig. 2 and on the top of Fig. 10 is λ∗(n) =
0.5 + 0.5 sin( π

3·180 ) and p∗(n) = 0.75 + 0.25 sin( π
3·180 ).

In the second run, λ∗(n) argument is added by π/2, so
λ∗(n) = 0.5 + 0.5 sin( π

3·180 + π/2) (Fig. 10c and d).

Fig. 12 Estimation of p∗(n)
with binomial weak estimation
via two alternative choices of
λ∗(n) estimations (λmax and λtr)
for SINE-1080-1080 a, SINE-
360-360 b, SINE-1080-360 c,
and SINE-1080-10080 d
Environments
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Table 4 Summary of tuning parameters resulting into minimum error, along with the parameters N = 5 and α = 0.9 for ptr and pmax. The lowest
error value among ptr and pmax for each case is represented in bold font

Estimator
Case

λtr λmax

N γ Error N α γ Error

SWITCH-1000-1000 50 0.97 0.08406 50 0.9 0.99 0.0524
SWITCH-1000-1000 5 0.98 0.06812 5 0.9 0.99 0.04199
SWITCH-100-100 20 0.92 0.10819 20 0.6 0.92 0.10819
SWITCH-100-100 5 0.94 0.08967 5 0.9 0.95 0.07445
SWITCH-1000-100 80 0.94 0.10135 75 0.9 0.94 0.08126
SWITCH-1000-100 5 0.94 0.08697 5 0.9 0.95 0.07086
SWITCH-1000-10000 65 0.95 0.10736 50 0.95 0.999 0.04036
SWITCH-1000-10000 5 0.999 0.08444 5 0.9 0.999 0.0399
SINE-1080-1080 80 0.94 0.11103 80 0.6 0.94 0.11103
SINE-1080-1080 5 0.97 0.06308 5 0.9 0.97 0.05056
SINE-360-360 35 0.92 0.125 35 0.6 0.92 0.125
SINE-360-360 5 0.94 0.077 5 0.9 0.94 0.07433
SINE-1080-360 60 0.94 0.11201 60 0.6 0.94 0.11201
SINE-1080-360 5 0.94 0.07282 5 0.9 0.94 0.06873
SINE-1080-10080 40 0.99 0.08299 40 0.7 0.99 0.08299
SINE-1080-10080 5 0.99 0.04871 5 0.9 0.99 0.0345
SINE-1080-1080-Shift 25 0.97 0.07681 20 0.8 0.97 0.762
SINE-1080-1080-Shift 5 0.97 0.0586 5 0.9 0.97 0.05437

Hereafter, we call it SINE-1080-1080-Shift. We observe
significant differences between tracking λ∗(n) throughout
the two scenarios SINE-1080-1080 (Fig. 10a and b) and
SINE-1080-1080-Shift (Fig. 10c and d). The estimators
λtr and λmax track λ∗(n) more accurately in SINE-1080-
1080 than SINE-1080-1080-Shift. Moreover, the minimum
estimation error for λtr in SINE-1080-1080-Shift is e =
0.10504, while it equals to e = 0.04682 for λtr in SINE-
1080-1080. Similarly, the minimum estimation error for
λmax in SINE-1080-1080-Shift is e = 0.10382. Compare it
to e = 0.0471 for λmax in SINE-1080-1080. We explain it
by analyzing Fig. 10. In general, when λ∗(n) value is close
to 0 or 1, the effect of wrong guidance from Environment is
reduced. The reason is that λ(n) cannot pass the boundaries.

Let λ∗(n) = 0.5 + 0.5 sin(θ), so we have p∗
1(n) =

0.75+0.25 sin(θ) for SINE-1080-1080 and p∗
2(n) = 0.75+

0.25 sin(θ − π/2) for SINE-1080-1080-Shift.
Let us take the case SINE-1080-1080 where p∗(n) and

λ∗(n) are in phase, i.e. p∗(n) = p∗
1(n) . Interestingly, the

valley of p∗
1(n) corresponds to the valley of λ∗(n). Since

p∗
1(n) has a valley around 0.5, then the tracking of λ∗(n)

will be handicapped during that period but this will not
affect much the accuracy as λ∗(n) is also experiencing a
valley and the changes are slow over that valley. However,
in case SINE-1080-1080-Shift where p∗

2(n) and λ∗(n) are
out of phase, a valley of p∗

2(n) coincides with a change of

λ∗(n) from its lowest value to its biggest value. Then, during
that valley of p∗

2(n), λ∗(n) tracking gets handicapped and
the error is big due to the scheme not being able to track
the true underlying λ∗(n) that changes dramatically from its
min to its max. To be more precise, let

θ1 = 2kπ + π/4, θ2 = 2kπ + 3π/4, θ3 = 2kπ + 5π/4,
θ4 = 2kπ + 7π/4, and θ5 = 2(k + 1)π + π/4 where k is a
positive integer. This way we divide a period of 1080 steps
to four equal parts each with 270 steps. For the above values,
λ∗(n1) up to λ∗(n2) is situated in the range [0.85, 1]; i.e. in
270 successive steps the point location is placed within this
range. However, for the next 270 steps, i.e. from λ∗(n2) to
λ∗(n3), the values locate in range [0.15, 0.85]. We observe
that the rate of changes is not uniform. Similarly, λ∗(n3) to
λ∗(n4) is placed in the range [0, 0.15] and λ∗(n4) to λ∗(n5)
is situated in the range [0.15, 0.85].

Similar to the discussions we had about SWITCH cases,
we have

1
T

T∑

t=1

p∗
1(n) ≈ 1

T

T∑

t=1

p∗
2(n).

This time p∗
1(n) and p∗

2(n) are exactly the same, but their
relation to λ∗(n) makes them different.

2715



A. Abolpour Mofrad et al.

In range n1 to n2, where λ∗(n) is located in [0.85, 1],
p∗
1(n1) to p∗

1(n2) is situated in the range [0.93, 1]. In range
n2 to n3, where λ∗(n) is located in [0.15, 0.85], p∗

1(n2) to
p∗
1(n3) is situated in the range[0.57, 0.93]. Moreover, in the

range n3 to n4, where λ∗(n) is located in[0, 0.15], p∗
1(n3) to

p∗
1(n4) is placed in the range [0.5, 0.57]. Finally, for range

n4 to n5, where λ∗(n) is located in [0.15, 0.85], p∗
1(n4) to

p∗
1(n5) is situated in the range [0.57, 0.93].
The intervals for values of p∗

2(n) are achieved through
shifting p∗

1(n) values. When λ∗(n) is in range [0.85, 1] it
takes values in [0.57, 0.93], and when λ∗(n) is in range
[0.15, 0.85] it takes values in [0.93, 1]. When λ∗(n) is
placed in range [0, 0.15] it takes values in [0.57, 0.93], and
when λ∗(n) is placed in range [0.15, 0.85] it takes values in
[0.5, 0.57]. See Table 3 for a summary:

A comparison of the two Environments reveals why
estimation of SINE-1080-1080 (p∗

1(n)) outperforms SINE-
1080-1080-Shift (p∗

2(n)):

– In range n1 − n2, since p∗
1(n) values are higher, we will

have more promising estimations. Note that p∗
2(n) is in

range [0.57, 0.93], λ∗(n) is close to 1, when it reaches
its peak, hence its value changes slowly. That is to say
in this period, estimations in SINE-1080-1080-Shift are
satisfactory. See, for instance, around n = 24500 in
Fig. 10c and d.

– In range n2 − n3, the changes in λ∗(n) are fast.
Estimation in SINE-1080-1080 case is more difficult
than SINE-1080-1080-Shift, because p∗

1(n) is in range
[0.57, 0.93] and p∗

2(n) is in range [0.93, 1].
– In range n3 − n4, the changes in λ∗(n) are not fast and

the value is close to the boundary. p∗
1(n) is in range

[0.5, 0.57] while the information from Environment is
almost random. However, since λ∗(n) is in a peak, its
value is close to boundary and does not change fast,
as we explained before, the most fluctuations will be
nearby the true λ∗(n); see around n = 21000 in Fig. 10a
and b. Tracking λ∗(n) changes in SINE-1080-1080-
Shift case is more accurate than in SINE-1080-1080
case.

– In range n4−n5, the changes in λ∗(n) are fast. Tracking
λ∗(n) in SINE-1080-1080 Environment, similar to the
range n2 − n3, is acceptable to some extent. However,
tracking the point location in SINE-1080-1080-Shift
Environment is almost impossible. As can be seen in
Fig. 10c and d around n = 22500, the combination
of fast changes of λ∗(n) and distance from boundaries,
cause huge deviation. Such periods result in higher
estimation error in SINE-1080-1080-Shift Environment
than SINE-1080-1080.

Therefore, both the rate of changes in Environment
effectiveness and its relationship to the point location might
affect the estimations.

4.6 Estimation of environment effectiveness: p∗(n)

In Figs. 11 and 12 the estimation error for various SWITCH
and SINE cases are presented respectively. Moreover,
Table 4 summarizes the choices of tuning parameters
resulting into the minimum error while Environment
effectiveness is estimated.

In order to depict the estimation performance of p∗(n),
we restrict the results to estimation based on two cases
λmax and λtr, for these are the main contribution in this
paper which perform the best. Moreover, we consider the
best parameters of these two estimators based on results of
previous error plots. The tuning parameters resulted to the
best minimum error reported in Table 4. We will consider
and discuss the results for N = 5 and α = 0.9 in Table 4
later. In the following we will compare the results from
best λ∗(n) estimations. The best minimum error in case
SWITCH-1000-1000 is achieved for p̂max when (N =
50,α = 0.9 and γ = 0.99) equals to e = 0.0524. The error
for alternative method, i.e. p̂tr equals to e = 0.08406 when
(N = 50, and γ = 0.97), see Table 4.

The best minimum error in case SWITCH-100-100 is
simultaneously achieved for p̂max and p̂tr at value e =
0.10819 with parameters (N = 20,α = 0.6, and γ =
0.92). In comparison with SWITCH-1000-1000, it is
weaker than the previous case in which Environment
changes more slowly.

In case SWITCH-1000-100, the best minimum error is
obtained through p̂max when (N = 75,α = 0.9 and γ =
0.94), that equals to e = 0.08126. Error for p̂tr
equals to e = 0.10135 in the case (N = 80, and
γ = 0.94).

Finally, the case SWITCH-1000-10000 where the mini-
mum error for p̂max when (N = 50,α = 0.95 and γ =
0.999) equals to e = 0.04036. The error for alternative
method p̂tr equals to e = 0.10736 in case that (N =
65, and γ = 0.95).

Overall, it seems like λmax performs a little better than
λtr. However, a significant disadvantage of λmax compared
with λtr is that the tracking of λ∗(n) requires tuning of two
parameters compared to only one for λtr. For dynamically
changing environments it is usually hard enough to tune one
parameter.

In case SINE-1080-1080 illustrated in Fig. 12a, we
choose N = 80 for λtr and (N = 80,α = 0.6) for λmax
as the best parameters. As reported in Table 4, the best
estimation error for both p̂max and p̂tr occurs at γ = 0.94
and equals e = 0.11103.

Similarly, we observe that both estimators are equally
well for cases SINE-360-360, SINE-1080-360, and SINE-
1080-10080; where the best estimation error equals to e =
0.125, e = 0.11201, and e = 0.08299 respectively, see
Table 4 for more details.
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Even though the estimation error for point location
in case SINE-1080-10080 is weaker than all the cases
SINE-1080-1080, SINE-360-360, and SINE-1080-360, its
estimated probability is preferred; because slower changes
can be tracked more easily.

In SINE cases, apart from the case SINE-1080-10080
and SINE-1080-1080-Shift, the estimation error is poor, i.e.
optimal error is greater than 0.1 in both p̂tr and p̂max. In
Figs. 11, 12 and Table 4, we see that in some cases p̂tr and
p̂max perform equally well, even though the estimators λtr
and λmax results are different. The reason is in estimation
of Environment effectiveness, the important data is whether
the suggested direction by Environment agrees with the
estimation or not. In other words the distance between
estimation and the point location is not important, and the
crucial issue is that both point location and its estimation,
are at the same side- left or right- of the query location. So
we can have exactly the same results even if the estimated
point is not the same in two estimators.

A natural question that might arise is that whether the
best parameters for estimation of λ∗(n) are the best for
estimating p∗(n) or not. A simple simulation, where we set
N = 5 and α = 0.9, provides a negative answer to this
question. These parameters result into a smaller estimation
error for all the cases compare to the best parameters.
Moreover, the p̂max estimations are all better than p̂tr. For
instance, in case SWITCH-1000-1000 the estimation error
for p̂tr drops from e = 0.08406 for N = 50, to e = 0.06812
for N = 5. For p̂max, error drops from e = 0.0524 to e =
0.04199 for the same resolutions. Similarly, for SINE-1080-
1080, please compare the error e = 0.11103 for N = 80
and α = 0.6 to e = 0.06308 and e = 0.05056 for p̂tr and
p̂max respectively, when N = 5 and α = 0.9; see Table 4.
We try to justify the reason behind this in the following.

Recall (4), (5), and (6) where we have:

πi = e.πi−1 whenever i ≤ Z ,

πZ+1 = πZ , and

πi =
πi−1

e
whenever i > Z + 1,

where e = p
q . To find a relation between resolution and π+

Z
we have:

1 =
N−1∑

i=0

π+
i

=
Z−1∑

i=0

π+
i +

N−1∑

i=Z+1

π+
i + π+

Z (20)

By substituting the relations (7), (8), and (9):

= 2q

⎛

⎝
Z−1∑

i=1

πi +
N−1∑

i=Z+1

πi

⎞

⎠ + 2p(πZ )

= 2q πZ

⎛

⎝
Z−1∑

i=1

(
1
e

)i

+
N−1∑

i=Z+1

(
1
e

)i−Z
⎞

⎠ + 2p(πZ ) (21)

By removing q and simplification:

= 2pπZ

[

1+ 1
e2

(
Z−2∑

i=0

(
1
e

)i

+
N−2∑

i=Z

(
1
e

)i−Z
)]

. So

πZ = 1

2p
[
1+ 1

e2

(∑Z−2
i=0

(
1
e

)i
+ ∑N−2

i=Z

(
1
e

)i−Z
)] (22)

The above equation implies that for a static environment
the larger N , the smaller πZ . Since for the estimation of
p∗(n) the accuracy of point location is not important, a
smaller resolution will increase the probability to be at the
correct pair, i.e. Z/N ≤ λ∗(n) < (Z + 1)/N . Based
on this argument, we can formally prove that a smaller
resolution gives a better estimation of p∗(n) while a larger
resolution yields a better estimation of λ∗(n). Based on
the above theoretical result that is in accordance with our
experimental results, we therefore suggest to run the SPL in
parallel using two different resolutions: a smaller resolution
for better estimation of p∗(n) and a larger resolution for
better estimation of λ∗(n).

4.7 Environment effectiveness tracking

The results of estimation of Environment effectiveness
through tracking curves, which are depicted in Figs. 13 and
14, are analyzed in this section.

Figure 13 compares tracking p∗(n) for two cases
SWITCH-1000-100 (a-b) and SWITCH-1000-10000 (c-d)
based on estimations λmax and λtr. We observe that p̂tr
fluctuation is higher than p̂max. Indeed, p̂max documents a
little better peak performance (as the trace plots show), but
at the price of requiring tuning of an additional parameter in
λmax.

Moreover, as we see more clear at SWITCH-1000-10000
case, whenever probability is closer to 1, any change in
λ∗(n) intensely affects the p∗(n) estimators. So we detect
sharper changes in p∗(n) estimators within the range of
n = 60000 to n = 70000. Then, there is a middle range
probability around 0.8 from n = 70000 to n = 80000.
In this range estimators fluctuate more but change less
shapely. Interestingly, within the range of n = 80000 to
n = 90000 there are fewer fluctuations. The reason is that
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Fig. 13 Comparison of how the
estimators track p∗(n) with
different dynamics. The
sub-figures a and b show how
λ∗(n) is tracked by λtr and λmax
respectively in case
SWITCH-1000-100.
Sub-figures c and d track λ∗(n)
by λtr and λmax respectively, in
case SWITCH-1000-10000. In
SWITCH-1000-100 cases a slice
of Environment from n = 60000
to n = 62000 are represented.
The represented slice for
SWITCH-1000-100 is
n = 60000 to n = 90000

the Environment provides almost random directions and
the changes of λ∗(n) are not followed by the estimators
efficiently. Since λ∗(n) estimation is the basis for p∗(n)
estimation, the changes in λ∗(n) could not affect p∗(n)
estimations. Therefore, there are no sharp changes when
p∗(n) is close to 0.5.

Even though the estimation error for point location in
case SWITCH-1000-10000 is weaker than SWITCH-1000-
100, its estimated probability is preferred; because slower
changes can be tracked more easily.

Figure 14 compares tracking p∗
1(n) with p∗

2(n) for
SINE-1080-1080 and SINE-1080-1080-Shift, based on
two estimations λmax and λtr. An interesting observation

regarding the Fig. 14 is the different behavior of estimations
near value 1. The estimation for p∗

1(n) is more accurate
comparing to p∗

2(n), which can be explained due to the
value of λ∗(n). The tracking is promoted by the fact that
in SINE-1080-1080 (Fig. 14a and b), λ∗(n) is both close
to 1 and changes more slowly. However, the tracking is
weakened in SINE-1080-1080-Shift due to λ∗(n) changes
faster in the middle ranges. Through comparing the two
results, it can be seen that although the estimation of
λ∗(n) is weaker in SINE-1080-1080-Shift, the proposed
estimators for p∗(n) in SINE-1080-1080-Shift are more
precise. Compare the minimum error e = 0.07681 in
SINE-1080-1080-Shift to e = 0.11103 in SINE-1080-1080.

Fig. 14 SINE-1080-1080.
Comparison of how the
estimations track p∗(n), when
λ∗(n) and p∗(n) are either
in-phase a–b, or out of phase
c–d
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Fig. 15 Trace plot for FES
(Max) and LTES (Tr) for
tracking the probability of the
current topic be News in topic
tracking experiment with
keyword list approach. The
black curve show the offline
estimate

5 Real-Life experiment

In this Section, we show how our proposed algorithms can
be used for topic tracking in a stream of text by enhancing
an existing estimator proposed in the literature [32]. Online
tracking of topics in a stream of text, such as news/social
media feeds, has been addressed in several research [3, 8,
25].

Consider News and Entertainment (including sports)
as the two topics of interest. The aim is to model
this problem such that the point location would be the
probability of current topic being News. This quantity has
the characteristics of point location (λ∗(n)). Additionally,
we need some guidance from Environment to be able to
run the proposed algorithms. As we will explain in the
following, we can consider x(n) ∈ {0, 1} to be a stream

of zero and ones, where zero stands for Entertainment and
one stands for News. So, x(n) is a Binomial variable and
λ∗(n)- i.e. probability that the current topic is News- is the
Bernoulli parameter for each trial.

In [32], the Stochastic Search on the Line-based
Discretized weak Estimator (SSLDE) is used to estimate
the parameters of a distribution, when these parameters
change with time. Note that in the distribution parameter
estimation problem, the Environment is rather artificial
and is constructed to suggest whether to increase or
decrease the current estimate. We follow the same method
as the SSLDE for the online tracking problem and
create an artificial Environment that guides us to the point
location.

Recall that for resolution N , we have λ(n) ∈
{0, 1/N , 2/N , · · · , i/N , · · · , (N−1)/N , 1}. The estimator

Fig. 16 Evaluation of FES
(Max) and LTES (Tr) for
tracking the News in feed
experiment in machine learning
approach. The black curve show
the offline estimate
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is assigned initially the value λ(0) = ⌊N/2⌋
N . The updating

rules for SSLDE [32] depends on whether the current
estimate is greater or less than N/2. Suppose that λ(n) = i

N
and, as mentioned above, let x(n) be the Binomial variable
that takes zero or one at time n.

1. Case 1: [i ≥ (N/2)]:
– If x(n) = 1 and rand() ≤ N

2·i :

E(n, i) = 1 → λ(n + 1) = min((i + 1), N )

N
– Else:

E(n, i) = 0 → λ(n + 1) = i − 1
N

2. Case 2: [i < (N/2)]:
– If x(n) = 0 and rand() ≤ N

2(N−i) :

E(n, i) = 0 → λ(n + 1) = max((i − 1), 0)
N

– Else:

E(n, i) = 1 → λ(n + 1) = i + 1
N

where 0 ≤ rand() ≤ 1 is a uniform random number
generator. Now, we are able to track the probability of the
current topic be News by using the above suggestions by
Environment.

5.1 Tracking problem

As mentioned above, News and Entertainment are the
two topics we consider in this experiment. To generate
the text feed, a large set of related articles are collected
from the popular Norwegian newspaper site vg.no. The
articles are shuffled randomly with the assumption that the
algorithm is unaware of when transitions between News and
Entertainment take place. In the same line as in [8], based
on the stream of text, two methods are used for generating
binary observations namely the keyword-list approach and
the Machine learning approach.

– Keyword lists. A keyword list is a set of words for each
topic, here News and Entertainment. For generation
of the keyword lists, the popular Pointwise Mutual
Information criterion [17] is used. We assume that one
word at time is received from the News feed and the
task is to track the probability of the current topic of the
text stream is News. The best possible estimate based on
the keyword list approach is to compute the portion of
keywords in each article that are News keywords. This
approach is called offline approach. The performance of
our algorithm can be compared to this offline approach
and see how close our online estimates are to the
optimal offline approach.

Figure 15 shows the tracking of the probability that
the current topic is News for FES (Max) and LTES (Tr)
for the first 15000 words. The total number of keywords
in the experiment was 800400, while there was not a
fixed period for changing between topics. We see that
our algorithms are able to track changes in the News
stream well. For instance, look at period n = 5000
to n = 11000. A difference between these real data
from the simulations in Section 4 is that here the rate
of changes is not fixed. As we see in Fig. 15 the offline
estimate changes rapidly in some periods (for n = 2000
to n = 5000) and does not change for a long period
(n = 5000 to n = 11000). Since in average the data
has long fixed periods, the best achieved resolution is
N = 185, which is better for the long periods.

It is worth mentioning that this tracking data can
be used as a classifier. Consider what we really want
to understand from the data is that if the current feed
belongs to the News or Entertainment. Indeed, the
required answer is if the probability of the current topic
be News is greater than 0.5 or not. Interestingly, for
classification application, the best resolution is much
smaller, i.e N = 45. The reason is that for classification,
the flexibility is much more important compared to
accuracy.

– Machine Learning. The most used approach to
automatically classify text into different classes like
topics or sentiment is to train a machine learner. The
process starts by dividing the training text stream in
batches of 20 words, each within one of the News
or Entertainment topics. In the machine learning
approach, the documents (batches) were represented
by word frequencies in a bag of word matrix. These
batches are used to train a machine learning model. For
this experiment multinomial ridge regression [4] is used
through the glmnet package in R [27]. For the testing
part, the single words of the text stream were collected
into batches of 20 words. Each batch in this phase were
classified into one of the News or Entertainment topics
using the trained multinomial regression model. The
probabilities of the current topic were updated in the
same manner as for the keyword list approach.

Figure 16 shows the tracking of the probabilities for the
different topics for the machine learning approach. The total
number of batches was 189141 which we depict the tracking
in the first 5000 batches. Data changes faster in the ML
approach and therefore the best resolution is much smaller;
N = 35. We see that the fluctuations are greater than Fig. 15
because of this smaller resolution, but in turn, it is more
adaptable with fast changes. Similar to the keyword list,
if we use the algorithms for classification, the resolution
will be even smaller; i.e. N = 11. So, being aware of that
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there might be different best parameters in the estimation
for different applications is an important point.

6 Conclusion

A wide range of real-life problems can be modeled as a SPL
problem, especially when the Environment is considered to
be non-stationary. The random walk method, that Oommen
presented for solving the SPL problem, is known to
converge into a value arbitrarily close to the point location,
when both resolution and time tend to infinity. Oommen’s
method simply discretizes the interval and performs a
controlled random walk on it. This paper is an extention
of the preliminary work presented [18] where we propose
a new method to estimate the point location in the SPL
problem domain. In the current paper, we have introduced
the mutual probability flux concept and have proved that
Flux-based Estimation Solution (FES) and Last Transition-
based Estimation Solution (LTES), as a special case, always
outperform Oommen’s method. Moreover, we present a
method to estimate Environment effectiveness, p∗(n). This
simple method could track the probability of receiving
correct response from the Environment in tandem with the
unknown location estimation.

Apart from theoretical proofs several experiments are
presented in order to understand the characteristics of
each method. We argued that λtr, proposed in this paper,
is equally simple but with better estimation performance
than Oommen’s method. λmax, λexp and λmed show better
estimation performance than λtr in low resolutions, but this
comes at the price of tuning one additional parameter. This
suggests that if we have no constraint on N , i.e. λ∗(n)
represents a continuous quantity, we can tune just with N
and estimate with LTES. But in the case where freely tuning
over N is not possible, tuning with α and using one of λmax,
λexp, and λmed could provide more accurate estimations.

As experiments show, the tracking of λ∗(n) performs
better when p∗(n) value is close to 1. The estimation
performance of λ∗(n) drops drastically when p∗(n) is close
to 0.5. This is as expected, since in case p∗(n) = 1, our
estimation procedure will be correct, i.e. λ̂(n) switches back
and forth around the true λ∗(n). In contradiction, in the case
p∗(n) is close to 0.5, we have more faulty feedback, and so
an unsatisfactory estimation of λ∗(n).

Based on the results, we have also discussed when λ∗(n)
value is close to 0 or 1, the effect of faulty guidance
from Environment will be reduced to some extent and
the estimation is slightly better. Moreover, if p∗(n) takes
the same value in average, faster changes of p∗(n) are
preferable; with the condition that changes in p∗(n) are
slow enough that estimator could converge into λ∗(n) when
p∗(n) is reaching to 1. In this case, faster changes interrupt

a long lasting weak estimation and bring the estimator back
into a more accurate value. However, if p∗(n) and λ∗(n)
changes simultaneously, the positive effect of faster changes
of p∗(n) is lost. We have also discussed that, not only the
rate of changes, but also the relation between λ∗(n) and
p∗(n) affects the estimation error where p∗(n) represents
reliability of the feedback from Environment. A satisfactory
estimation of p∗(n) informs us to what extent we can trust
the feedback and subsequently the estimations we have built
upon that.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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Abstract
An adaptive task difficulty assignment method which we reckon as balanced difficulty task finder (BDTF) is proposed in

this paper. The aim is to recommend tasks to a learner using a trade-off between skills of the learner and difficulty of the

tasks such that the learner experiences a state of flow during the learning. Flow is a mental state that psychologists refer to

when someone is completely immersed in an activity. Flow state is a multidisciplinary field of research and has been

studied not only in psychology, but also neuroscience, education, sport, and games. The idea behind this paper is to try to

achieve a flow state in a similar way as Elo’s chess skill rating (Glickman in Am Chess J 3:59–102) and TrueSkill

(Herbrich et al. in Advances in neural information processing systems, 2006) for matching game players, where ‘‘matched

players’’ should possess similar capabilities and skills in order to maintain the level of motivation and involvement in the

game. The BDTF draws analogy between choosing an appropriate opponent or appropriate game level and automatically

choosing an appropriate difficulty level of a learning task. This method, as an intelligent tutoring system, could be used in a

wide range of applications from online learning environments and e-learning, to learning and remembering techniques in

traditional methods such as adjusting delayed matching to sample and spaced retrieval training that can be used for people

with memory problems such as people with dementia.

Keywords Adaptive task difficulty � State of flow � Intelligent tutoring system � Game ranking systems � Online learning �
Adjusting delayed matching-to-sample � Computerized adaptive testing � Stochastic point location

Introduction

Attempts to achieve computer tutoring systems that are as

effective as human tutors can be traced back to the earliest

days of computers (Smith and Sherwood 1976). Online

learning is becoming a significant driving force in today’s

educational systems. The lack of faculty members is a

common trend in today’s universities which makes per-

sonalized one to one teaching challenging, or practically

impossible. Students may struggle to fulfill their full

potential because the assigned tasks are generic and not

tailored to their specific needs and skill level. Several

studies show that personalized learning is the key to

increased fulfillment of potential (see, e.g., Miliband 2004).

A possible solution to the latter problem is resorting to the

advances in AI in order to personalize the teaching process.

AI could be defined as: ‘‘The automation of activities that

we associate with human thinking, activities such as
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decision-making, problem solving and learning’’ (Bellman

1978).

Some of early studies that allude to the term Intelligent

Tutoring System (ITS) dates back to 1982, where D. Slee-

man and J.S Brown pioneered the idea of a system

designed to help students reach their full potential in a

limited amount of time (see Sleeman and Brown 1982). A

few years later, a study is published demonstrating that

individual tutoring is twice as effective as group teaching

(Bloom 1984). Later, online e-learning platforms such as

Kahn Academy1 and Udemy,2 massive open online course

(MOOC) such as MIT OpenCourseWare,3 digital hand in

tools like Fronter, plagiarism controls like Ephorus

(Fronter), and autograding assignment tools such as Bak-

pax4 have emerged. True ITS also exists with open tools

like Codeacademy5 and other e-learning platforms.

ITSs can raise student performance beyond the level of

traditional classes and even beyond the level of students

who learn from human tutors (see Kulik and Fletcher 2016,

for a survey). A recent study by Chirikov et al. (2020)

shows that online education platforms could scale high-

quality science, technology, engineering, and mathematics

(STEM) education through national online education plat-

forms at universities. Such instruction can produce similar

learning outcomes for students as traditional, in-person

classes with a much lower cost (see also VanLehn 2011, for

a review of relative effectiveness of human tutoring,

intelligent tutoring systems, and other tutoring systems or

no tutoring).

An ITS is supposed to ‘‘provide immediate and cus-

tomized instruction or feedback to learners’’ (Psotka et al.

1988). In this paper, we provide algorithms that aspire to

fulfill the latter statement for the purpose of task selection.

Many ITSs are based on Computerized Adaptive Testing

(CAT) which is a form of computer-based test in which the

correctness of the student’s responses shapes the difficulty

level of upcoming tasks (see, e.g. Hatzilygeroudis et al.

2006; Kozierkiewicz-Hetmańska and Nguyen 2010; Jansen

et al. 2016, for instance). The aims of testing and practic-

ing through tutoring differ; testing should efficiently esti-

mate the student’s ability (Birnbaum 1968; Eggen and

Verschoor 2006), while training and practicing need to

consider motivation and involvement of students in line

with the length of the test (Jansen et al. 2016). A proba-

bility of success of 0.5 could minimize the test length, but

this level of challenge could be frustrating for some stu-

dents. For instance, in Math Garden, which is a web-based

application for monitoring and practicing math skills based

on CAT principles (Klinkenberg et al. 2011), a success

rate of 75% is considered on average.

There is a substantial body of work on Learning Auto-

mata (LA) and ITSs (see, e.g. Oommen and Hashem 2013).

In simple terms, LA is a stochastic machine attempting to

find the optimal strategy from a set of actions in a random

environment. LA, as a fundamental problem in AI, is

particularly important in decision making under uncer-

tainty (see Narendra and Thathachar 2012, for an intro-

duction to LA). The term tutorial-like systems refers to

study tutorial systems while no entity needs to be a real-life

individual. Research in this field tries to model components

of the system with appropriate learning models, such as

LA (Oommen and Hashem 2013).

In a tutorial-like system, the teacher also might be

stochastic and learns through the process of training

(Hashem 2007). The design and analysis of a tutorial-like

system model could involve modeling of a student (Oom-

men and Hashem 2009b), modeling of a classroom of

students where artificial students can interact and learn

from each other as well as the teacher (Oommen and

Hashem 2009a), modeling of a (stochastic) teacher

(Hashem and Oommen 2007), modeling the domain

knowledge (Oommen and Hashem 2010), and modeling

how teaching abilities of a teacher can be improved

(Oommen and Hashem 2013).

ITSs can also be applied in some traditional learning

methods in behavior analysis such as titrated delayed

Matching-to-Sample (MTS) method, also referred as

adjusting delayed MTS (Cumming and Berryman 1965;

Sidman 2013).6 Titrated delayed MTS has been used to

study remembering in a variety of settings, including to

study important variables in analyzing short-term memory

problems (Arntzen and Steingrimsdottir 2014). Similar

applications of ITSs in MTS and titrated delayed MTS

procedures, can proposed to the computational models of

these experimental methods which are usually introduced

in the sake of research (see, e.g. Mofrad et al. 2020, for a

recent computational model that simulates MTS proce-

dure). ITSs can be used as a tool in the simulation part of

training phase of MTS or titrated delayed MTS procedures

to study the effect of adaptive training in a simulator

model.

1 www.khanacademy.com.
2 www.udemy.com.
3 https://ocw.mit.edu.
4 www.bakpax.com.
5 www.codecademy.com.

6 Matching-to-sample procedures, have been frequently used to study

complex human behavior (see for instance Cumming and Berryman

1965; Sidman 1994). Arntzen (2012) provides an overview of MTS

experiments and several variables that can be manipulated when

designing an experiment through MTS procedures. In adjusting

delayed MTS, the length of the delay changes as a function of the

participants’ responses, which makes it similar to the adaptive task

assignment problem.
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Spaced retrieval training (SRT) (Camp et al. 1989) is

another method of learning and retaining a piece of infor-

mation by recalling that piece of information over

increasingly longer intervals. The underlying problem in

SRT is also similar to the adaptive difficulty task assign-

ment which is addressed here. The SRT method is espe-

cially used for people with dementia (Camp et al. 1996).

Note that defining or measuring task difficulty can be

addressed in many ways. A definition based on whether or

not a task is performed, has applications in developmental

research. In this context, easier tasks can be performed at

earlier stages of development (see, e.g. Gilbert et al. 2012).

For healthy adults, a difficult task can be defined as a

quantitative measure, say percentage of task compliance in

a series of trials. Response time is another measure of task

difficulty, where a longer response time in average is

equivalent to a more difficult task. Accuracy and response

time, however, trade against each other (Fitts 1966;

Wickelgren 1977) and both must be considered in a well-

defined and standard task difficulty measure. Difficult tasks

in this respect, can be defined as those with long response

time and and/or high frequency error (see, e.g. Gilbert et al.

2012, for other accounts in defining task difficulty).

In this paper, we present a formal theory by which an

ITS can select the difficulty of task in a similar manner to

selecting an opponent of similar capabilities in balanced

difficulty game (Herbrich et al. 2006), which is called

Balanced Difficulty Task Finder (BDTF). As suggested by

systems such as Elo’s chess skill rating (Glickman 1995)

and TrueSkill (Herbrich et al. 2006) for matching game

players, matched players should have similar capabilities

and skills in order to achieve a balance between skills and

challenges to experience the state of flow. We draw anal-

ogy between choosing an appropriate opponent or appro-

priate game level and automatically choosing an

appropriate level of a learning task. It is noteworthy that by

way of analogy, we can model the student as the player and

the chosen task by the system as the opponent.

Paper organization

The remainder of this paper is organized as follows. ‘‘State

of art’’ section reviews the state of the art and various

approaches to ITS modeling. ‘‘Modeling task selection as

balanced game using balanced difficulty task finder’’ sec-

tion models task selection as balanced difficulty game by

resorting to our devised BDTF. ‘‘The concept of flow’’

section addresses the concept of flow from psychological

point of view. In ‘‘Related work on games’’ section, related

works from research on games are reported. ‘‘Neural basis

of adaptive learning and state of flow experience’’ section

addresses some literature on neural basis of adaptive

learning and state of flow. Furthermore, theoretical

formulation of BDTF is provided in ‘‘Formulating learning

as a balanced difficulty game’’ section. Experimental

results in ‘‘Experimental results’’ section catalogues the

convergence properties of the BDTF discussed in the the-

ory part. Finally, concluding remarks and future works are

addressed in ‘‘Conclusions and future work’’ section.

State of art

In this section, relevant studies and papers are discussed to

give the reader an overview over the current state of the art.

Although several papers on this topic exist dating back

several years, the literature reviewed in this section is

limited to content published (preferably) after 2005.

There are several approaches to create an ITS. In the

most recent papers, we are presented with a mix of dif-

ferent artificial intelligence approaches to solve the prob-

lem. Common for most of the papers reviewed is the need

for a model of student including different properties like

learning-rate, previous experience and knowledge, and

other variables. An approach for such a model (from now

referred to as the student model) is represented in numerous

studies (see for instance Brusilovsky and Millán 2007;

Clement et al. 2014, 2015; Millán et al. 2010).

The use of the student model in recent papers suggests

that this approach is fairly common in the field of ITS.

Even though the model itself is fairly common, the

implementation varies significantly. As an example, Cle-

ment et al. (2015) resort to a combination of a student

model and a cognitive model to create a tutoring model.

With this approach, the authors try to eliminate the need for

a strongly typed student model. The goal is to adjust the

learning tasks to individual students with as little infor-

mation as possible. The use of a Learning Automata (LA)

algorithm enables the system to find the optimal learning

sequence for a specific student subject to some constraints;

such as requiring certain activities to happen before others.

A disadvantage of the latter approach is particularly the

assumption that some tasks should be carried out in an

order. The authors (Clement et al. 2015) assume that after

task A1, either A2 or B1 need to follow. If students move

to B1, they can not move back to any task in A category.

This is in most cases a simplification of the learning pro-

cess, since students should be able to work on several

categories and practice by repeating previous categories.

Clement et al. (2015) use partial-observable Markov

decision process (POMDP) for optimization of task

selection, which is inspired by Rafferty et al. (2011) who

used the students acquisition level to propose activities.

This method requires the system to assume all students

learn in the same way. It is also stated that this approach

can be optimal, but requires sophisticated student and
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cognitive models. In most cases these methods are based on

knowledge tracing-methods (KTM) which attempt to esti-

mate student knowledge in a parametric manner. Usually,

the lack of data causes this form of modeling to be inac-

curate. POMDPs also has been suggested to be used for

modeling a population of students, instead of individuals.

This approach has been proven to be suboptimal in an ITS

setting (Clement et al. 2015; Lee and Brunskill 2012).

On the other hand, several improved versions of the

KTM have been proposed in the literature. A Representa-

tive example is the Bayesian knowledge tracing (BKT) with

skill-specific parameters for each student. There are strong

indicators that BKT models accounting for the student

variance is superior to the Bayesian knowledge model

(Pardos and Heffernan 2010; Yudelson et al. 2013). This

partially nuances the criticism proposed by Clement et al.

(2015).

A significant number of studies indicate that intrinsically

motivated students perform better. Thus, this requires a

good ITS keeps motivating the student throughout the

whole learning experience. Lumsden (1994) investigated

the optimal strategy for motivating the student, and found

that one of the main keystones for a motivational experi-

ence is task mastery. This is backed up by Clement et al.

(2015) who proposes a solution where the student is pre-

sented with tasks that are neither too easy nor too hard, but

slightly beyond their current abilities. Psychologists refer

to this experience as state of flow (see, e.g. Csikzentmi-

halyi 1996).

In this article, we propose a solution where each student

starts with a predefined optimal-difficulty (Clement et al.

2015) which will be adjusted over time based on the stu-

dent answers. Some students may be more prone to be

motivated with challenging tasks, and therefore the overall

learning outcome may be more effective for these students.

On the other hand, we might find students struggling with

the default or optimal-difficulty. In such cases, the learn-

ing-rate should be decreased, allowing these students to

participate at a slower pace.

There are several possible alternatives to design an ITS.

We have looked at several candidates in this study,

including multi-armed bandits (Clement et al. 2015),

Bayesian-networks (Millán et al. 2010) and neural-net-

works (Zatarain Cabada et al. 2015), each with its own

advantages. As mentioned earlier the student model is an

important part of this ITS. In the latter reviewed papers, the

neural network and Bayesian-network both relied on

comprehensive student models, with a solid core of data in

order to be able to draw accurate assumptions and deci-

sions. These systems are shown to be reliable and effective,

but comprehensive data models are required in order to

achieve optimal operation (Clement et al. 2015). With the

use of LA it is possible to eliminate the need for prior-

knowledge about the students. The LA is efficient, and it

requires a weaker link between student and the cognitive

model. Clement et al. (2015) propose an LA for seven to

eight years old school-children learning to decompose

numbers while manipulating money. Even though a generic

solution is presented by Clement et al. (2015) relying

on multi-armed bandit, there is no evidence that a similar

approach is viable for use for adults and contexts addressed

in online learning (see also Hashem and Oommen 2007;

Hashem 2007; Oommen and Hashem 2009a, b, 2010, 2013,

for LA based models for a generalized framework of

tutoring system, called tutoring-like systems).

A limited number of studies describe the use of ITS in

programming courses. As representative studies, we iden-

tified Java Sensei (Zatarain Cabada et al. 2015) and ASK-

ELLE (Jeuring et al. 2012), each of the latter studies use a

different machine learning approach. Java Sensei resorts to

a combination of neural-network strategies and emotion

sensors to register information and to make decisions based

on input. ASK-ELLE ITS utilizes a domain reasoner using

a Haskel Compiler called Helios. This compiler was

developed to give feedback on wrong syntax. The system

requires each student to complete a given task, but helps

the student to accomplish the tasks by giving hints and

examples relevant to found error(s).

Before moving to the model and contribution of this

paper, we refer to the Stochastic Point Location (SPL)

problem which has some similarities to the current work. A

considerable amount of literature has been published on

SPL since the Oommen work (Oommen 1997) (see for

instance Yazidi et al. 2014; Mofrad et al. 2019). In SPL, an

LA search for a point location in a line through the guid-

ance of an external environment which might give faulty

advice. Many scientific and real-life problems can be

modeled as the instances of SPL problem, including

adaptive task assignment problem. For instance, in Mofrad

et al. (2019), some authors of this paper discuss that the

point location can represent the difficulty level of a task

that a participant can handle, and tries to find that point as

fast and accurate as possible. The participant performance

in Mofrad et al. (2019) is modeled using a stair function

with two levels: a high performance for difficulties under

the optimal manageable difficulty level and a low perfor-

mance for difficulties just above the same level, i.e., the

manageable optimal difficulty level. However, if we rather

use a more realistic performance function according to

which the performance is continuous and monotonically

decreases as a function of the difficulty level, the approach

proposed in Mofrad et al. (2019) will basically converge to

difficulty level for which the participant performance is at

50% under some mild conditions. In other words the model

finds a manageable difficulty level and can be used in

titrated delayed MTS, SRT and online environments. Such
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remark motivated the current study in which we resort to

the latter realistic performance model, for efficiently find-

ing a higher rates of performance that are motivating

enough for the learner, and provides a balance between

challenge and skills, usually above 50% such as 70%. In

comparison with Mofrad et al. (2019), where the adjust-

ment technique is symmetric, in the current work the effect

of correct and incorrect responses are not the same, i.e. the

adjustment is asymmetric.

Modeling task selection as balanced game
using balanced difficulty task finder

In this section, we present BDTF as the main contribution

in this article which is a theory that aspires to learn the

appropriate difficulty of a task rather than exploring dif-

ferent types of tasks as in the case of work in Andersen

et al. (2016). Although both approaches can be combined,

we clearly distinguish between them as the second case can

be seen as a novel theory for determining the adequate

difficulty level of an assignment for the purpose of keeping

the learning activity motivating and not exploring (as in

Andersen et al. (2016), which is more concerned about

exploring the different tasks in a similar manner to bandit

problem).

Difficulty is a subjective concept, or more precisely, it is

more individual and personal (see, e.g. Gilbert et al. 2012).

We argue that difficulty should be tailored to the ability of

the student. In fact, as in video games, or chess, the player

is motivated by an appropriate level of challenge or

equivalently difficulty. For example, the purpose of Xbox

TrueSkill system (Herbrich et al. 2006) is to match players

that have similar capabilities so that the outcome of the

game is unpredictable (optimally equi-chance of winning

and losing). Elo tries to find a global ranking among

players and TrueSkill is similar to the Elo rating system for

matching chess players. We advocate that, in a similar

manner to TrueSkill and Elo, a student needs to find an

enough challenging assignment that matches his

capabilities.

After a brief introduction on psychological concept of

flow experience (‘‘The concept of flow’’ section), review-

ing related works on games (‘‘Related work on games’’

section), and related works addressing neural basis of

adaptive task difficulty and the state of flow (‘‘Neural basis

of adaptive learning and state of flow experience’’ section),

we provide a sound mathematical formulation (‘‘Formu-

lating learning as a balanced difficulty game’’ section) that

emanates from the field of stochastic approximation

(Kushner and Yin 2003).

The concept of flow

The history of optimal human functioning in humanistic

and health psychology can be tracked back to the work of

Maslow (1959) who refereed to these moments of self-

actualization peak experiences. These experiences are

described as instances of happiness, fulfillment, and

achievement with a feeling of awareness to one’s human

potential. Csikzentmihalyi (1996) has described such an

experience as a state of flow since it is characterized by ‘‘an

almost automatic, effortless, yet highly focused state of

consciousness’’ (p. 110).

Any mental or physical activity, according to

Csikzentmihalyi (1996), can generate flow if: it is a chal-

lenging enough task that requires intense concentration and

commitment, involves clear goals, provides immediate

feedback, and is perfectly balanced to the skill level of the

person.

Delle Fave and Massimini (1988) discuss that balancing

challenges and skills is not enough for optimizing the

quality of experience and the notion of skill stretching

inherent in the flow concept. They redefined flow as the

balance of challenges and skills at the time both are above

average levels for the person. Moreover, the quality of

experience intensifies in a channel by moving away from a

person’s average levels in the challenge/skills space. Fig-

ure 1 depicts a classification of experiences based on the

level of challenge and skill in eight categories. The rings

depict increasing intensity of experience in each channel or

Fig. 1 Model of the flow state adapted from Csikszentmihalyi (2020).

Perceived challenges and skills must be above the person average

level in order to experience a state of a flow. The apathy is the case

when both are below the average and the experience intensity is

increased by distancing from average, shown by rings
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quadrant (see Nakamura and Csikszentmihalyi 2014, for a

detailed overview of the concept of flow).

Related work on games

A representative study that sheds light on the relationship

between three inter-related concepts: difficulty, motivation

and learning is presented by Chen (2007) that introduces

the flow Channel to the filed of games. According to Schell

(2014) and Chen (2007), when the difficulty exceeds the

learner’s skill, the learner experience a feeling of anxiety at

the thought of his learning skills are insufficient, and as a

result gets demotivated. Consequently, the learner tends to

abandon the activity after short time. On the other hand,

boredom takes place in the other extreme case where the

student level is much higher than the assignment’s diffi-

culty. In this sense, the student perceives the assignment as

a waste of time. The ideal case according to Schell (2014)

and Chen (2007) takes place when the aptitude of the

learner and the difficulty level are in state of balance. In

this case, similar to the psychological definition of flow, the

learner is said to achieve a state of flow. Chen (2007)

defines the flow as: ‘‘the feeling of complete and energized

focus in an activity, with a high level of enjoyment and

fulfillment’’.

As reported by Gallego-Durán et al. (2016), the notion

of difficulty in games does not seem to have attracted much

attention in the field of education in general. In this per-

spective, the proposed BDTF tries to bridge the gap

between two seemingly disjoint fields of research, namely,

ITSs and game ranking/matching systems.

The most pertinent work to our approach emanates from

the realm of computer games and chess where it was

remarked that when the level of the game is either too

difficult or too easy, the players abandon playing (Chen

2007; Schell 2014). Extensive literature has been centred

on the design of adaptive method to adjust the difficulty of

the game so that to match the level of the players, but in the

interest of brevity, we skip them (see, e.g. Hunicke 2005).

Neural basis of adaptive learning and state
of flow experience

There are many studies on the neural basis of state of flow

that we briefly review some of them. Due to the complexity

of concept of flow, it must be measured through its com-

ponents. Dietrich (2004) analyses the flexibility/efficiency

trade-off in the flow state and concludes that a prerequisite

to the experience of flow period is ‘‘a state of transient

hypofrontality that enables the temporary suppression of

the analytical and meta-conscious capacities of the explicit

system’’. Klasen et al. (2012) use brain imaging to study

neural basis of flow and showed an influence of flow on

midbrain reward structures as well as complex network of

sensorimotor, cognitive and emotional brain circuits. Some

of the components of flow that identified in this study are

focus, direct feedback, balance between skill and difficulty,

clear goals and having control over the activity. Flow

association with prefrontal functions such as emotion and

reward processing was suggested by Yoshida et al. (2014)

where brain activity in the prefrontal cortex during a flow

state is examined using functional near-infrared spec-

troscopy (fNIRS). Cheron (2016) addresses some possible

ways to measure the psychological flow from a neuro-

science perspective. The neuroscience studies on games are

not limited to the flow state, but we leave it since it is out of

the scope of this article (see Palaus et al. 2017, for a sys-

tematic review on neural basis of video gaming).

To achieve and keep the state of flow, we use adaptive

task difficulty methods. The neural basis of adaptive task

difficulty has been studied by researches of the field (see,

e.g. Flegal et al. 2019). An important issue is to see if the

cognitive training effect could transfer to untrained tasks

and neural plasticity. Kalbfleisch et al. (2007) study the

influences of task difficulty and response correctness dur-

ing fluid reasoning on neural systems using functional

magnetic resonance imaging (fMRI). Von Bastian and

Eschen (2016) compared conditions in which the difficulty

of working memory training tasks was adaptive, self-se-

lected, or randomly varied, in a behavioral study. The

reported results indicate that all three procedures produced

equivalent improvement on trained tasks, in comparison

with an active control group. However, no significant dif-

ference between the training groups and the active control

group, was reported for the transfer effects on untrained

working memory tasks and far transfer (reasoning) tasks.

So the transfer effects could not link to adaptivity or

variability of task difficulty. McKendrick et al. (2014)

examined mechanisms of training-induced plasticity by

comparing a group that received adaptive working memory

training with an active control group where task difficulty

was matched to the performance of participants in the

adaptive group, i.e. training was variable but not individ-

ually adaptive. The method was continuous monitoring of

working memory training with near infrared spectroscopy

(NIRS) during a dual verbal–spatial working memory task.

The results suggested refuting the hypothesis that the

effectiveness of adaptive task difficulty and variable task

difficulty are alike. Flegal et al. (2019) study the effect of

adaptive task difficulty on transfer of training and neural

plasticity by measuring behavioral and neural plasticity in

fMRI sessions before and after 10 sessions of working

memory updating (WMU) training. The tasks difficulty was

either fixed or adaptively increased in response to perfor-

mance. The results show the transfer to an untrained epi-

sodic memory task activation decreases in striatum and
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hippocampus on a trained WMU task in adaptive training.

Flegal et al. (2019) support the use of adaptive training as

the best practice and suggest that cognitive training pro-

grams need to incorporate adaptive task difficulty to extend

the transfer of training gains and optimize the efficiency of

task-related brain activity (see also Gaume et al. 2019;

Mora-Sánchez et al. 2020, for brain-computer interfaces

which are able to monitor the working memory load and

cognitive load in real-time based on biomarkers derived

from EEG).

Formulating learning as a balanced difficulty
game

Without loss of generality, we suppose that the difficulty of

any given task can be characterized by a real number from

[0, 1], where 0 denotes the lowest possible difficulty and 1

denotes the highest possible difficulty.

The main intuition behind BDTF is the fact that the

chance of a student for succeeding in a given task decreases

monotonically as the difficulty level increases. We suppose

that a student possesses a characterizing skill-curve that

describes the relationship between the difficulty of the task

and the student chance for succeeding in solving the task.

We assume that the tasks are ranked on scale from 0 to 1 by

an expert such as teacher where 0 denotes the lowest level

of difficulty and 1 denotes the highest level of difficulty.

We suppose that s� is the optimal success probability

that we want a learner (student) to experience. It is up to

the designer of the intelligent tutoring system to fix the

desired target chance of the succeeding in a task for a

student. Thus, our approach will try to adjust the difficulty

of the given tasks in an online manner that drives the

system towards a state of flow (Chen 2007). Inspired by

Elo system, one can choose s� ¼ 0:5 which basically

means that the designer desires that the student finds the

tasks challenging enough by fixing the target success

probability to 50%.

Please note that this reflects the most uncertain case

since the outcome of the task in terms of success or failure

is unpredictable. However, deciding on s� value requires

more in depth study that takes into account many factors

including psychological factors. In this paper, and in all the

experiments presented in the rest of the article, we will fix

s� ¼ 0:7 which basically reflects the fact that we desire the

student to succeed most of the time in solving the given

task while failing just 30% of the time.

In addition, we suppose that we are operating in a dis-

crete time space and t referring to the current time instant.

The difficulty of the next assignment at time t þ 1 depends

on the difficulty of the solved assignment at time t as well

as the previous achievement (success or failure).

dðt þ 1Þ ¼ minð1; dðtÞ þ kð1� s�ÞÞ: if xðtÞ ¼ 1

maxð0; dðtÞ � ks�Þ: if xðtÞ ¼ 0

�

ð1Þ

where d(t) denotes the difficulty of the task at time t,7 k is

an update parameter that is in the interval ]0, 1[, and x(t)

denotes the binary variable that records the result of solv-

ing the task given at time instant t. xðtÞ ¼ 0 in case of

failure and xðtÞ ¼ 1 in case of success.

Equation (1) describes a recursive update of the diffi-

culty of the tasks depending on the performance of the

student, x(t). According to Eq. (1), the difficulty gets

increased upon success and decreased upon failure in an

asymmetric manner. We suppose that at time t ¼ 0, the

BDTF starts by suggesting a task with difficulty

dð0Þ ¼ 0:5, i.e, we start with tasks with medium level. We

suppose that for student i, there is a function SiðdÞ that

describes the success probability given the difficulty of the

task. Whenever there is no ambiguity, we drop the index i.

As explained previously, the latter function is monotoni-

cally decreasing. Please note that xðtÞ ¼ 1 with probability

S(d(t)) and xðtÞ ¼ 0 with probability 1� SðdðtÞÞ. We will

later provide theoretical results that demonstrate that if

there exists a point d� such that Sðd�Þ ¼ s� then the update

equation converges to it. Since d is defined over [0, 1] and

S(d) is decreasing over [0, 1] and admits values in [0, 1],

then for any function Si such point d
� is unique (if it exists).

A simple and sufficient condition for the existence as well

as uniqueness of d� is that Sið0Þ ¼ 1 and Sið1Þ ¼ 0. This

has an intuitive interpretation: the success probability for

the min difficulty is one and for the max difficulty is zero.

However, in general, S(0) might be different from one and

S(1) might be different from zero. The following theorem

catalogues the convergence of our scheme for an arbitrary

monotonically decreasing function S such that S is mapping

from [0, 1] to [0, 1].8

It is noteworthy that the proof of the coming theorem is

based on the results of the stochastic approximation theory

(Kushner and Yin 2003). The informed reader would

observe that our algorithm is very similar to the seminal

algorithm of Robbins and Monro (1951) who pioneered the

field of stochastic approximation. The main differences are

the following:

• They use a time dependent update parameter k.
• In Robbins and Monro (1951), the response function is

increasing, while in our case it is decreasing.

7 When relation to time is not important, we simply use d to refer to

difficulty.
8 The function S(.) has values within [0, 1] since it denotes the

probability of success.
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Those differences can be tackled easily in the proof as

within the field of stochastic approximation, there are two

types of algorithms: algorithms with fixed step size and

algorithms with time varying step size, usually decreasing.

We are working in this paper with a fixed step size algo-

rithm. The second difference concerns the response func-

tion. The monotonicity of the function gives uniqueness of

the equilibrium. If our function was increasing, we would

simply change k by �k. This form of update is similar to

gradient descent where the direction of movement is

determined according to whether we are facing a mini-

mization or maximization problem.

Theorem 1 The stochastic process d(t) converges to one of

the three following cases as the learning parameter k tends

to zero:

Case 1 If min SðdÞ� s� � max SðdÞ, then

limt!1 limk!0 dðtÞ ¼ S�1ðs�Þ ¼ d�.
Case 2 If max SðdÞ\s�, then limt!1 limk!0 dðtÞ ¼ 0.

Case 3 If min SðdÞ[ s�, then limt!1 limk!0 dðtÞ ¼ 1.

Proof Similar to Altman et al. (2009), we can re-write the

update equations as per:

dðt þ 1Þ ¼ PHðdðtÞ þ kðxðtÞ � s�ÞÞ ð2Þ

where PH denote the following projection

PHðdÞ ¼
d; if 1\d\0;
1; if d� 1;
0; if d� 0:

8<
:

The usage of projection is common with the field of

stochastic approximation to force the iteration to stay with

a bounded set H ¼ ½0; 1�, and they are projected back to the

set whenever they go outside it. Without loss of generality,

the boundary set we are using here, consisting of zero and

one, is a well-behaved one as described by Borkar

(2009, Chapter 5.4). We can show that process converges

to some limit set of the following Ordinary Differential

Equation (ODE):

_d ¼ E½xðtÞjd� � s�: ð3Þ

We know that E½xðtÞjd� ¼ SðdÞ, therefore the ODE is

_d ¼ SðdÞ � s�: ð4Þ

The decreasing nature of S(d) provides the uniqueness of

the fixed point s� whenever min SðdÞ� s� � max SðdÞ.
Whenever s� lies outside H ¼ ½0; 1�, we will converge

towards the boundary point, zero and one, according to

whether max SðdÞ\s� or min SðdÞ[ s� respectively. h

Experimental results

In this section, we provide some experimental results

which confirm the theoretical results presented in

Theorem 1.

In order to describe the relationship between difficulty

and success, we define

SðdÞ ¼ a� b=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, where

0\b� a� 1, ensuring that S is decreasing. In the reported

results for three cases of the theorem, k ¼ 0:01, and the

target success probability is s� ¼ 0:7. Please note that the

aim of the section is to rather confirm the theoretical

properties of our scheme so any decreasing function

suffices.

Figure 2 depicts the time evolution of d and the corre-

sponding success probability S(d) where SðdÞ ¼
1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Please note that since

min SðdÞ ¼ 0� s� ¼ 0:7� max SðdÞ ¼ 1, then according

to Theorem 1, d(t) converges to d� ¼ S�1ðs�Þ ¼ 0:458.

Figure 3 depicts the time evolution of d and the corre-

sponding success probability S(d) where SðdÞ ¼ 0:6�
0:5=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Please note that since max SðdÞ ¼ 0:6\s� ¼ 0:7,

then d(t) converges to d� ¼ 0.

Finally, Fig. 4 depicts the time evolution of d and the

corresponding success probability S(d) where SðdÞ ¼ 1�
0:2=ð1þ expð� 20 � ðd � 0:5ÞÞÞ for an update parameter

k ¼ 0:01. Since min SðdÞ ¼ 0:8[ s� ¼ 0:7, then d(t) con-

verges to d� ¼ 1.

Please note that the convergence time is a function of

both starting point distance to optimal difficulty and value

of k. In Fig. 2, the optimal difficulty is d� ¼ 0:458 which

means it is about 0.14 far from the starting point. After

around 100 iterations, the optimal difficulty is reached. In

Figs. 3 and 4 the optimal difficulty is about 0.5 far from the

starting point, and in both cases after about 600 steps, the

optimal difficulty is reached. In all the three cases,

k ¼ 0:01. To study the role of k in the convergence time,

we fix the success probability function to

SðdÞ ¼ 1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, which is

depicted in Fig. 2 and test it for three different values of

k ¼ 0:1, k ¼ 0:01, and k ¼ 0:001. As we see in Fig. 5,

smaller values of k result into a slower, but smoother

convergence. In Fig. 5a, with k ¼ 0:1, the convergence is

just about 10 steps, in Fig. 5b, with k ¼ 0:01, the conver-

gence happens after about 100 steps, and finally in Fig. 5c,

with k ¼ 0:001, the convergence happens after about 1000

steps. Hence, the value of k can be chosen in a way to find

a compromise between convergence speed and conver-

gence accuracy.
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The aim of the last experiment is to demonstrate the

ability to track the changes in optimal difficulty. This is

analogous to the cases where instructor or teacher decides

to give easier or harder tasks based on the feedback from

learner. In Fig. 6 the optimal success probability is set to

s� ¼ 0:7 at the beginning where the learner achieves this

success rate when the optimal difficulty is d� ¼ 0:458.

Then at time instance t ¼ 1500, the teacher see that this is

still challenging for the student and decided to provide

student with tasks that 90% of the time handled by student.

Figure 6a shows the case that k ¼ 0:01 and therefore the

change rate it higher. Figure 6b is when changes are

slower, k ¼ 0:001. The optimal difficulty for s� ¼ 0:9

equals d� ¼ 0:39.

Conclusions and future work

In this paper, we tackled the problem of personalized task

assignment in online learning environment as well as

training methods for retaining information. We present the

BDTF which is a formal theory by which an ITS can fine

tune the difficulty of a task to a level that matches the

student level. The underlying assumption of the BDTF is

that the ITSs can fine tune the difficulty of the task to a

continuous level. The BDTF application to the learning

methods that focus on memory and retaining information

such as adjusting delayed MTS and spaced retrieval

training methods is discussed. These methods are looking

for the best delay time between two consecutive tasks and

can be used for memory training.

Fig. 2 Case 1 in the theorem.

SðdÞ ¼ 1� 1=ð1þ expð� 20 �
ðd � 0:5ÞÞÞ so d(t) converges to

d� ¼ S�1ðs�Þ ¼ 0:458

Fig. 3 Case 2 in the theorem.

SðdÞ ¼ 0:6� 0:5=ð1þ
expð� 20 � ðd � 0:5ÞÞÞ so d(t)
converges to d� ¼ 0
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The BDTF approach deals only with binary feedback. It

is possible to extend our work so that to accommodate non-

binary feedback in the form of a continuous or discrete

score reflecting the achievement of the student in solving a

given task. Furthermore, as a future work, we intend to

explore the effect of learning on the progress of the student.

Intuitively, the success probability S(d) shall also be fre-

quency dependent, i.e, the more assignments the student

Fig. 4 Case 3 in the theorem.

SðdÞ ¼ 1� 0:2=ð1þ
expð� 20 � ðd � 0:5ÞÞÞ so d(t)
converges to d� ¼ 1

(a) λ = 0.1 (b) λ = 0.01

(c) λ = 0.001

Fig. 5 The success probability function based on difficulty is SðdÞ ¼ 1� 1=ð1þ expð� 20 � ðd � 0:5ÞÞÞ, which is depicted in Fig. 2. The

optimal task difficulty for success probability s� ¼ 0:7 is d� ¼ 0:458 and shown by dashed red line
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tries, the higher the chance of success in future tasks. This

is also described as the learning effect that results from

repetitive trials. The latter effect can be easily accommo-

dated in our model by rendering S(d) a function of the

number of trials, meaning the dynamics of S(d) shall

include a frequency dependent term. An interesting avenue

for research is the possibility of introducing the recency

and spacing in time between the different student trials as

an extra parameter in S(d). BDTF approach could be

extended to the tutorial-like systems similar to the LA

applications for a generalized concept of ITS proposed by

Hashem (2007). Since we are using LA, we can integrate

the idea of having an stochastic teacher (Hashem and

Oommen 2007), modeling a classroom of students where

artificial students can interact and learn from each other as

well as the teacher (see Oommen and Hashem 2009a, for

such a model), and propose an adaptive learning model of

teacher and how teaching abilities of a teacher can be

improved during the process (inspired by Oommen and

Hashem (2013)).
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